summaryrefslogtreecommitdiff
path: root/src/math/log.c
blob: 98051205f80ec607d416a645a1d77d63cb0eebc8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/* origin: FreeBSD /usr/src/lib/msun/src/e_log.c */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */
/* log(x)
 * Return the logrithm of x
 *
 * Method :
 *   1. Argument Reduction: find k and f such that
 *                      x = 2^k * (1+f),
 *         where  sqrt(2)/2 < 1+f < sqrt(2) .
 *
 *   2. Approximation of log(1+f).
 *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
 *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
 *               = 2s + s*R
 *      We use a special Remez algorithm on [0,0.1716] to generate
 *      a polynomial of degree 14 to approximate R The maximum error
 *      of this polynomial approximation is bounded by 2**-58.45. In
 *      other words,
 *                      2      4      6      8      10      12      14
 *          R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
 *      (the values of Lg1 to Lg7 are listed in the program)
 *      and
 *          |      2          14          |     -58.45
 *          | Lg1*s +...+Lg7*s    -  R(z) | <= 2
 *          |                             |
 *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
 *      In order to guarantee error in log below 1ulp, we compute log
 *      by
 *              log(1+f) = f - s*(f - R)        (if f is not too large)
 *              log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
 *
 *      3. Finally,  log(x) = k*ln2 + log(1+f).
 *                          = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
 *         Here ln2 is split into two floating point number:
 *                      ln2_hi + ln2_lo,
 *         where n*ln2_hi is always exact for |n| < 2000.
 *
 * Special cases:
 *      log(x) is NaN with signal if x < 0 (including -INF) ;
 *      log(+INF) is +INF; log(0) is -INF with signal;
 *      log(NaN) is that NaN with no signal.
 *
 * Accuracy:
 *      according to an error analysis, the error is always less than
 *      1 ulp (unit in the last place).
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following
 * constants. The decimal values may be used, provided that the
 * compiler will convert from decimal to binary accurately enough
 * to produce the hexadecimal values shown.
 */

#include "libm.h"

static const double
ln2_hi = 6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
ln2_lo = 1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
two54  = 1.80143985094819840000e+16,  /* 43500000 00000000 */
Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */

double log(double x)
{
	double hfsq,f,s,z,R,w,t1,t2,dk;
	int32_t k,hx,i,j;
	uint32_t lx;

	EXTRACT_WORDS(hx, lx, x);

	k = 0;
	if (hx < 0x00100000) {  /* x < 2**-1022  */
		if (((hx&0x7fffffff)|lx) == 0)
			return -two54/0.0;  /* log(+-0)=-inf */
		if (hx < 0)
			return (x-x)/0.0;   /* log(-#) = NaN */
		/* subnormal number, scale up x */
		k -= 54;
		x *= two54;
		GET_HIGH_WORD(hx,x);
	}
	if (hx >= 0x7ff00000)
		return x+x;
	k += (hx>>20) - 1023;
	hx &= 0x000fffff;
	i = (hx+0x95f64)&0x100000;
	SET_HIGH_WORD(x, hx|(i^0x3ff00000));  /* normalize x or x/2 */
	k += i>>20;
	f = x - 1.0;
	if ((0x000fffff&(2+hx)) < 3) {  /* -2**-20 <= f < 2**-20 */
		if (f == 0.0) {
			if (k == 0) {
				return 0.0;
			}
			dk = (double)k;
			return dk*ln2_hi + dk*ln2_lo;
		}
		R = f*f*(0.5-0.33333333333333333*f);
		if (k == 0)
			return f - R;
		dk = (double)k;
		return dk*ln2_hi - ((R-dk*ln2_lo)-f);
	}
	s = f/(2.0+f);
	dk = (double)k;
	z = s*s;
	i = hx - 0x6147a;
	w = z*z;
	j = 0x6b851 - hx;
	t1 = w*(Lg2+w*(Lg4+w*Lg6));
	t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
	i |= j;
	R = t2 + t1;
	if (i > 0) {
		hfsq = 0.5*f*f;
		if (k == 0)
			return f - (hfsq-s*(hfsq+R));
		return dk*ln2_hi - ((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
	} else {
		if (k == 0)
			return f - s*(f-R);
		return dk*ln2_hi - ((s*(f-R)-dk*ln2_lo)-f);
	}
}