summaryrefslogtreecommitdiff
path: root/src/math/lgamma_r.c
blob: fff565d228ef626145e9f152f5478e88906f8079 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
/* origin: FreeBSD /usr/src/lib/msun/src/e_lgamma_r.c */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 *
 */
/* lgamma_r(x, signgamp)
 * Reentrant version of the logarithm of the Gamma function
 * with user provide pointer for the sign of Gamma(x).
 *
 * Method:
 *   1. Argument Reduction for 0 < x <= 8
 *      Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
 *      reduce x to a number in [1.5,2.5] by
 *              lgamma(1+s) = log(s) + lgamma(s)
 *      for example,
 *              lgamma(7.3) = log(6.3) + lgamma(6.3)
 *                          = log(6.3*5.3) + lgamma(5.3)
 *                          = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
 *   2. Polynomial approximation of lgamma around its
 *      minimun ymin=1.461632144968362245 to maintain monotonicity.
 *      On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
 *              Let z = x-ymin;
 *              lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
 *      where
 *              poly(z) is a 14 degree polynomial.
 *   2. Rational approximation in the primary interval [2,3]
 *      We use the following approximation:
 *              s = x-2.0;
 *              lgamma(x) = 0.5*s + s*P(s)/Q(s)
 *      with accuracy
 *              |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
 *      Our algorithms are based on the following observation
 *
 *                             zeta(2)-1    2    zeta(3)-1    3
 * lgamma(2+s) = s*(1-Euler) + --------- * s  -  --------- * s  + ...
 *                                 2                 3
 *
 *      where Euler = 0.5771... is the Euler constant, which is very
 *      close to 0.5.
 *
 *   3. For x>=8, we have
 *      lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
 *      (better formula:
 *         lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
 *      Let z = 1/x, then we approximation
 *              f(z) = lgamma(x) - (x-0.5)(log(x)-1)
 *      by
 *                                  3       5             11
 *              w = w0 + w1*z + w2*z  + w3*z  + ... + w6*z
 *      where
 *              |w - f(z)| < 2**-58.74
 *
 *   4. For negative x, since (G is gamma function)
 *              -x*G(-x)*G(x) = pi/sin(pi*x),
 *      we have
 *              G(x) = pi/(sin(pi*x)*(-x)*G(-x))
 *      since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
 *      Hence, for x<0, signgam = sign(sin(pi*x)) and
 *              lgamma(x) = log(|Gamma(x)|)
 *                        = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
 *      Note: one should avoid compute pi*(-x) directly in the
 *            computation of sin(pi*(-x)).
 *
 *   5. Special Cases
 *              lgamma(2+s) ~ s*(1-Euler) for tiny s
 *              lgamma(1) = lgamma(2) = 0
 *              lgamma(x) ~ -log(|x|) for tiny x
 *              lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero
 *              lgamma(inf) = inf
 *              lgamma(-inf) = inf (bug for bug compatible with C99!?)
 *
 */

#include "libm.h"
#include "libc.h"

static const double
pi  =  3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
a0  =  7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
a1  =  3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
a2  =  6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
a3  =  2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
a4  =  7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
a5  =  2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
a6  =  1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
a7  =  5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
a8  =  2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
a9  =  1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
a10 =  2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
a11 =  4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
tc  =  1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
tf  = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
/* tt = -(tail of tf) */
tt  = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
t0  =  4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
t1  = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
t2  =  6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
t3  = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
t4  =  1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
t5  = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
t6  =  6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
t7  = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
t8  =  2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
t9  = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
t10 =  8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
t12 =  3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
t14 =  3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
u0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
u1  =  6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
u2  =  1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
u3  =  9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
u4  =  2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
u5  =  1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
v1  =  2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
v2  =  2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
v3  =  7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
v4  =  1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
v5  =  3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
s0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
s1  =  2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
s2  =  3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
s3  =  1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
s4  =  2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
s5  =  1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
s6  =  3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
r1  =  1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
r2  =  7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
r3  =  1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
r4  =  1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
r5  =  7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
r6  =  7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
w0  =  4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
w1  =  8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
w2  = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
w3  =  7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
w4  = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
w5  =  8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
w6  = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */

/* sin(pi*x) assuming x > 2^-100, if sin(pi*x)==0 the sign is arbitrary */
static double sin_pi(double x)
{
	int n;

	/* spurious inexact if odd int */
	x = 2.0*(x*0.5 - floor(x*0.5));  /* x mod 2.0 */

	n = (int)(x*4.0);
	n = (n+1)/2;
	x -= n*0.5f;
	x *= pi;

	switch (n) {
	default: /* case 4: */
	case 0: return __sin(x, 0.0, 0);
	case 1: return __cos(x, 0.0);
	case 2: return __sin(-x, 0.0, 0);
	case 3: return -__cos(x, 0.0);
	}
}

double __lgamma_r(double x, int *signgamp)
{
	union {double f; uint64_t i;} u = {x};
	double_t t,y,z,nadj,p,p1,p2,p3,q,r,w;
	uint32_t ix;
	int sign,i;

	/* purge off +-inf, NaN, +-0, tiny and negative arguments */
	*signgamp = 1;
	sign = u.i>>63;
	ix = u.i>>32 & 0x7fffffff;
	if (ix >= 0x7ff00000)
		return x*x;
	if (ix < (0x3ff-70)<<20) {  /* |x|<2**-70, return -log(|x|) */
		if(sign) {
			x = -x;
			*signgamp = -1;
		}
		return -log(x);
	}
	if (sign) {
		x = -x;
		t = sin_pi(x);
		if (t == 0.0) /* -integer */
			return 1.0/(x-x);
		if (t > 0.0)
			*signgamp = -1;
		else
			t = -t;
		nadj = log(pi/(t*x));
	}

	/* purge off 1 and 2 */
	if ((ix == 0x3ff00000 || ix == 0x40000000) && (uint32_t)u.i == 0)
		r = 0;
	/* for x < 2.0 */
	else if (ix < 0x40000000) {
		if (ix <= 0x3feccccc) {   /* lgamma(x) = lgamma(x+1)-log(x) */
			r = -log(x);
			if (ix >= 0x3FE76944) {
				y = 1.0 - x;
				i = 0;
			} else if (ix >= 0x3FCDA661) {
				y = x - (tc-1.0);
				i = 1;
			} else {
				y = x;
				i = 2;
			}
		} else {
			r = 0.0;
			if (ix >= 0x3FFBB4C3) {  /* [1.7316,2] */
				y = 2.0 - x;
				i = 0;
			} else if(ix >= 0x3FF3B4C4) {  /* [1.23,1.73] */
				y = x - tc;
				i = 1;
			} else {
				y = x - 1.0;
				i = 2;
			}
		}
		switch (i) {
		case 0:
			z = y*y;
			p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
			p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
			p = y*p1+p2;
			r += (p-0.5*y);
			break;
		case 1:
			z = y*y;
			w = z*y;
			p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12)));    /* parallel comp */
			p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
			p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
			p = z*p1-(tt-w*(p2+y*p3));
			r += tf + p;
			break;
		case 2:
			p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
			p2 = 1.0+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
			r += -0.5*y + p1/p2;
		}
	} else if (ix < 0x40200000) {  /* x < 8.0 */
		i = (int)x;
		y = x - (double)i;
		p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
		q = 1.0+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
		r = 0.5*y+p/q;
		z = 1.0;    /* lgamma(1+s) = log(s) + lgamma(s) */
		switch (i) {
		case 7: z *= y + 6.0;  /* FALLTHRU */
		case 6: z *= y + 5.0;  /* FALLTHRU */
		case 5: z *= y + 4.0;  /* FALLTHRU */
		case 4: z *= y + 3.0;  /* FALLTHRU */
		case 3: z *= y + 2.0;  /* FALLTHRU */
			r += log(z);
			break;
		}
	} else if (ix < 0x43900000) {  /* 8.0 <= x < 2**58 */
		t = log(x);
		z = 1.0/x;
		y = z*z;
		w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
		r = (x-0.5)*(t-1.0)+w;
	} else                         /* 2**58 <= x <= inf */
		r =  x*(log(x)-1.0);
	if (sign)
		r = nadj - r;
	return r;
}

weak_alias(__lgamma_r, lgamma_r);