Age | Commit message (Collapse) | Author | Lines |
|
if sem_post is interrupted between clearing the waiters bit from the
semaphore value and performing the futex wait operation, subsequent
calls to sem_post will not perform a wake operation unless a new
waiter has arrived.
usually, this is at most a minor nuisance, since the original wake
operation will eventually happen. however, it's possible that the wake
is delayed indefinitely if interrupted by a signal handler, or that
the address the wake needs to be performed on is no longer mapped if
the semaphore was a process-shared one that has since been unmapped
but has a waiter on a different mapping of the same semaphore. this
can happen when another thread using the same mapping "steals the
post" atomically before actually becoming a second waiter, deduces
from success that it was the last user of the semaphore mapping, then
re-posts and unmaps the semaphore mapping. this scenario was described
in a report by Markus Wichmann.
instead of checking only the waiters bit, also check the waiter count
that was sampled before the atomic post operation, and perform the
wake if it's nonzero. this will not produce any additional wakes under
non-race conditions, since the waiters bit only becomes zero when
targeting a single waiter for wake. checking both was already the
behavior prior to commit 159d1f6c02569091c7a48bdb2e2e824b844a1902.
|
|
because the has-waiters state in the semaphore value futex word is
only representable when the value is zero (the special value -1
represents "0 with potential new waiters"), it's lost if intervening
operations make the semaphore value positive again. this creates an
ABA issue in sem_post, whereby the post uses a stale waiters count
rather than re-evaluating it, skipping the futex wake if the stale
count was zero.
the fix here is based on a proposal by Alexey Izbyshev, with minor
changes to eliminate costly new spurious wake syscalls.
the basic idea is to replace the special value -1 with a sticky
waiters bit (repurposing the sign bit) preserved under both wait and
post. any post that takes place with the waiters bit set will perform
a futex wake.
to be useful, the waiters bit needs to be removable, and to remove it
safely, we perform a broadcast wake instead of a normal single-task
wake whenever removing the bit. this lets any un-accounted-for waiters
wake and re-add the waiters bit if they still need it.
there are multiple possible choices for when to perform this
broadcast, but the optimal choice seems to be doing it whenever the
observed waiters count is less than two (semantically, this means
exactly one, but we might see a stale count of zero). in this case,
the expected number of threads to be woken is one, with exactly the
same cost as a non-broadcast wake.
|
|
private-futex uses the virtual address of the futex int directly as
the hash key rather than requiring the kernel to resolve the address
to an underlying backing for the mapping in which it lies. for certain
usage patterns it improves performance significantly.
in many places, the code using futex __wake and __wait operations was
already passing a correct fixed zero or nonzero flag for the priv
argument, so no change was needed at the site of the call, only in the
__wake and __wait functions themselves. in other places, especially
where the process-shared attribute for a synchronization object was
not previously tracked, additional new code is needed. for mutexes,
the only place to store the flag is in the type field, so additional
bit masking logic is needed for accessing the type.
for non-process-shared condition variable broadcasts, the futex
requeue operation is unable to requeue from a private futex to a
process-shared one in the mutex structure, so requeue is simply
disabled in this case by waking all waiters.
for robust mutexes, the kernel always performs a non-private wake when
the owner dies. in order not to introduce a behavioral regression in
non-process-shared robust mutexes (when the owning thread dies), they
are simply forced to be treated as process-shared for now, giving
correct behavior at the expense of performance. this can be fixed by
adding explicit code to pthread_exit to do the right thing for
non-shared robust mutexes in userspace rather than relying on the
kernel to do it, and will be fixed in this way later.
since not all supported kernels have private futex support, the new
code detects EINVAL from the futex syscall and falls back to making
the call without the private flag. no attempt to cache the result is
made; caching it and using the cached value efficiently is somewhat
difficult, and not worth the complexity when the benefits would be
seen only on ancient kernels which have numerous other limitations and
bugs anyway.
|
|
this is not required by the standard, but it's nicer than corrupting
the state and rather inexpensive.
|
|
the race condition these changes address is described in glibc bug
report number 12674:
http://sourceware.org/bugzilla/show_bug.cgi?id=12674
up until now, musl has shared the bug, and i had not been able to
figure out how to eliminate it. in short, the problem is that it's not
valid for sem_post to inspect the waiters count after incrementing the
semaphore value, because another thread may have already successfully
returned from sem_wait, (rightly) deemed itself the only remaining
user of the semaphore, and chosen to destroy and free it (or unmap the
shared memory it's stored in). POSIX is not explicit in blessing this
usage, but it gives a very explicit analogous example with mutexes
(which, in musl and glibc, also suffer from the same race condition
bug) in the rationale for pthread_mutex_destroy.
the new semaphore implementation augments the waiter count with a
redundant waiter indication in the semaphore value itself,
representing the presence of "last minute" waiters that may have
arrived after sem_post read the waiter count. this allows sem_post to
read the waiter count prior to incrementing the semaphore value,
rather than after incrementing it, so as to avoid accessing the
semaphore memory whatsoever after the increment takes place.
a similar, but much simpler, fix should be possible for mutexes and
other locking primitives whose usage rules are stricter than
semaphores.
|
|
1. make sem_[timed]wait interruptible by signals, per POSIX
2. keep a waiter count in order to avoid unnecessary futex wake syscalls
|
|
|