summaryrefslogtreecommitdiff
path: root/src/thread/pthread_cond_timedwait.c
blob: 7aaba95475957719fa0119eb9247bc02ed32da66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#include "pthread_impl.h"

/*
 * struct waiter
 *
 * Waiter objects have automatic storage on the waiting thread, and
 * are used in building a linked list representing waiters currently
 * waiting on the condition variable or a group of waiters woken
 * together by a broadcast or signal; in the case of signal, this is a
 * degenerate list of one member.
 *
 * Waiter lists attached to the condition variable itself are
 * protected by the lock on the cv. Detached waiter lists are
 * protected by the associated mutex. The hand-off between protections
 * is handled by a "barrier" lock in each node, which disallows
 * signaled waiters from making forward progress to the code that will
 * access the list using the mutex until the list is in a consistent
 * state and the cv lock as been released.
 *
 * Since process-shared cond var semantics do not necessarily allow
 * one thread to see another's automatic storage (they may be in
 * different processes), the waiter list is not used for the
 * process-shared case, but the structure is still used to store data
 * needed by the cancellation cleanup handler.
 */

struct waiter {
	struct waiter *prev, *next;
	int state, barrier, requeued, mutex_ret;
	int *notify;
	pthread_mutex_t *mutex;
	pthread_cond_t *cond;
	int shared;
};

/* Self-synchronized-destruction-safe lock functions */

static inline void lock(volatile int *l)
{
	if (a_cas(l, 0, 1)) {
		a_cas(l, 1, 2);
		do __wait(l, 0, 2, 1);
		while (a_cas(l, 0, 2));
	}
}

static inline void unlock(volatile int *l)
{
	if (a_swap(l, 0)==2)
		__wake(l, 1, 1);
}

enum {
	WAITING,
	SIGNALED,
	LEAVING,
};

static void unwait(void *arg)
{
	struct waiter *node = arg, *p;

	if (node->shared) {
		pthread_cond_t *c = node->cond;
		pthread_mutex_t *m = node->mutex;
		if (a_fetch_add(&c->_c_waiters, -1) == -0x7fffffff)
			__wake(&c->_c_waiters, 1, 0);
		node->mutex_ret = pthread_mutex_lock(m);
		return;
	}

	int oldstate = a_cas(&node->state, WAITING, LEAVING);

	if (oldstate == WAITING) {
		/* Access to cv object is valid because this waiter was not
		 * yet signaled and a new signal/broadcast cannot return
		 * after seeing a LEAVING waiter without getting notified
		 * via the futex notify below. */

		pthread_cond_t *c = node->cond;
		lock(&c->_c_lock);
		
		if (c->_c_head == node) c->_c_head = node->next;
		else if (node->prev) node->prev->next = node->next;
		if (c->_c_tail == node) c->_c_tail = node->prev;
		else if (node->next) node->next->prev = node->prev;
		
		unlock(&c->_c_lock);

		if (node->notify) {
			if (a_fetch_add(node->notify, -1)==1)
				__wake(node->notify, 1, 1);
		}
	}

	node->mutex_ret = pthread_mutex_lock(node->mutex);

	if (oldstate == WAITING) return;

	/* If the mutex can't be locked, we're in big trouble because
	 * it's all that protects access to the shared list state.
	 * In order to prevent catastrophic stack corruption from
	 * unsynchronized access, simply deadlock. */
	if (node->mutex_ret && node->mutex_ret != EOWNERDEAD)
		for (;;) lock(&(int){0});

	/* Wait until control of the list has been handed over from
	 * the cv lock (signaling thread) to the mutex (waiters). */
	lock(&node->barrier);

	/* If this thread was requeued to the mutex, undo the extra
	 * waiter count that was added to the mutex. */
	if (node->requeued) a_dec(&node->mutex->_m_waiters);

	/* Find a thread to requeue to the mutex, starting from the
	 * end of the list (oldest waiters). */
	for (p=node; p->next; p=p->next);
	if (p==node) p=node->prev;
	for (; p && p->requeued; p=p->prev);
	if (p==node) p=node->prev;
	if (p) {
		p->requeued = 1;
		a_inc(&node->mutex->_m_waiters);
		/* The futex requeue command cannot requeue from
		 * private to shared, so for process-shared mutexes,
		 * simply wake the target. */
		int wake = node->mutex->_m_type & 128;
		__syscall(SYS_futex, &p->state, FUTEX_REQUEUE|128,
			wake, 1, &node->mutex->_m_lock) != -EINVAL
		|| __syscall(SYS_futex, &p->state, FUTEX_REQUEUE,
			0, 1, &node->mutex->_m_lock);
	}

	/* Remove this thread from the list. */
	if (node->next) node->next->prev = node->prev;
	if (node->prev) node->prev->next = node->next;
}

int pthread_cond_timedwait(pthread_cond_t *restrict c, pthread_mutex_t *restrict m, const struct timespec *restrict ts)
{
	struct waiter node = { .cond = c, .mutex = m };
	int e, seq, *fut, clock = c->_c_clock;

	if ((m->_m_type&15) && (m->_m_lock&INT_MAX) != __pthread_self()->tid)
		return EPERM;

	if (ts && ts->tv_nsec >= 1000000000UL)
		return EINVAL;

	pthread_testcancel();

	if (c->_c_shared) {
		node.shared = 1;
		fut = &c->_c_seq;
		seq = c->_c_seq;
		a_inc(&c->_c_waiters);
	} else {
		lock(&c->_c_lock);

		node.barrier = 1;
		fut = &node.state;
		seq = node.state = WAITING;
		node.next = c->_c_head;
		c->_c_head = &node;
		if (!c->_c_tail) c->_c_tail = &node;
		else node.next->prev = &node;

		unlock(&c->_c_lock);
	}

	pthread_mutex_unlock(m);

	do e = __timedwait(fut, seq, clock, ts, unwait, &node, !node.shared);
	while (*fut==seq && (!e || e==EINTR));
	if (e == EINTR) e = 0;

	unwait(&node);

	return node.mutex_ret ? node.mutex_ret : e;
}

int __private_cond_signal(pthread_cond_t *c, int n)
{
	struct waiter *p, *q=0;
	int ref = 0, cur;

	lock(&c->_c_lock);
	for (p=c->_c_tail; n && p; p=p->prev) {
		/* The per-waiter-node barrier lock is held at this
		 * point, so while the following CAS may allow forward
		 * progress in the target thread, it doesn't allow
		 * access to the waiter list yet. Ideally the target
		 * does not run until the futex wake anyway. */
		if (a_cas(&p->state, WAITING, SIGNALED) != WAITING) {
			ref++;
			p->notify = &ref;
		} else {
			n--;
			if (!q) q=p;
		}
	}
	/* Split the list, leaving any remainder on the cv. */
	if (p) {
		if (p->next) p->next->prev = 0;
		p->next = 0;
	} else {
		c->_c_head = 0;
	}
	c->_c_tail = p;
	unlock(&c->_c_lock);

	/* Wait for any waiters in the LEAVING state to remove
	 * themselves from the list before returning or allowing
	 * signaled threads to proceed. */
	while ((cur = ref)) __wait(&ref, 0, cur, 1);

	/* Wake the first signaled thread and unlock the per-waiter
	 * barriers preventing their forward progress. */
	for (p=q; p; p=q) {
		q = p->prev;
		if (!p->next) __wake(&p->state, 1, 1);
		unlock(&p->barrier);
	}
	return 0;
}