#include #include #include #include "libm.h" #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 long double sqrtl(long double x) { return sqrt(x); } #elif (LDBL_MANT_DIG == 113 || LDBL_MANT_DIG == 64) && LDBL_MAX_EXP == 16384 #include "sqrt_data.h" #define FENV_SUPPORT 1 typedef struct { uint64_t hi; uint64_t lo; } u128; /* top: 16 bit sign+exponent, x: significand. */ static inline long double mkldbl(uint64_t top, u128 x) { union ldshape u; #if LDBL_MANT_DIG == 113 u.i2.hi = x.hi; u.i2.lo = x.lo; u.i2.hi &= 0x0000ffffffffffff; u.i2.hi |= top << 48; #elif LDBL_MANT_DIG == 64 u.i.se = top; u.i.m = x.lo; /* force the top bit on non-zero (and non-subnormal) results. */ if (top & 0x7fff) u.i.m |= 0x8000000000000000; #endif return u.f; } /* return: top 16 bit is sign+exp and following bits are the significand. */ static inline u128 asu128(long double x) { union ldshape u = {.f=x}; u128 r; #if LDBL_MANT_DIG == 113 r.hi = u.i2.hi; r.lo = u.i2.lo; #elif LDBL_MANT_DIG == 64 r.lo = u.i.m<<49; /* ignore the top bit: pseudo numbers are not handled. */ r.hi = u.i.m>>15; r.hi &= 0x0000ffffffffffff; r.hi |= (uint64_t)u.i.se << 48; #endif return r; } /* returns a*b*2^-32 - e, with error 0 <= e < 1. */ static inline uint32_t mul32(uint32_t a, uint32_t b) { return (uint64_t)a*b >> 32; } /* returns a*b*2^-64 - e, with error 0 <= e < 3. */ static inline uint64_t mul64(uint64_t a, uint64_t b) { uint64_t ahi = a>>32; uint64_t alo = a&0xffffffff; uint64_t bhi = b>>32; uint64_t blo = b&0xffffffff; return ahi*bhi + (ahi*blo >> 32) + (alo*bhi >> 32); } static inline u128 add64(u128 a, uint64_t b) { u128 r; r.lo = a.lo + b; r.hi = a.hi; if (r.lo < a.lo) r.hi++; return r; } static inline u128 add128(u128 a, u128 b) { u128 r; r.lo = a.lo + b.lo; r.hi = a.hi + b.hi; if (r.lo < a.lo) r.hi++; return r; } static inline u128 sub64(u128 a, uint64_t b) { u128 r; r.lo = a.lo - b; r.hi = a.hi; if (a.lo < b) r.hi--; return r; } static inline u128 sub128(u128 a, u128 b) { u128 r; r.lo = a.lo - b.lo; r.hi = a.hi - b.hi; if (a.lo < b.lo) r.hi--; return r; } /* a<= 64) { a.hi = a.lo<<(n-64); a.lo = 0; } else { a.hi = (a.hi<>(64-n)); a.lo = a.lo<>n, 0 <= n <= 127 */ static inline u128 rsh(u128 a, int n) { if (n == 0) return a; if (n >= 64) { a.lo = a.hi>>(n-64); a.hi = 0; } else { a.lo = (a.lo>>n) | (a.hi<<(64-n)); a.hi = a.hi>>n; } return a; } /* returns a*b exactly. */ static inline u128 mul64_128(uint64_t a, uint64_t b) { u128 r; uint64_t ahi = a>>32; uint64_t alo = a&0xffffffff; uint64_t bhi = b>>32; uint64_t blo = b&0xffffffff; uint64_t lo1 = ((ahi*blo)&0xffffffff) + ((alo*bhi)&0xffffffff) + (alo*blo>>32); uint64_t lo2 = (alo*blo)&0xffffffff; r.hi = ahi*bhi + (ahi*blo>>32) + (alo*bhi>>32) + (lo1>>32); r.lo = (lo1<<32) + lo2; return r; } /* returns a*b*2^-128 - e, with error 0 <= e < 7. */ static inline u128 mul128(u128 a, u128 b) { u128 hi = mul64_128(a.hi, b.hi); uint64_t m1 = mul64(a.hi, b.lo); uint64_t m2 = mul64(a.lo, b.hi); return add64(add64(hi, m1), m2); } /* returns a*b % 2^128. */ static inline u128 mul128_tail(u128 a, u128 b) { u128 lo = mul64_128(a.lo, b.lo); lo.hi += a.hi*b.lo + a.lo*b.hi; return lo; } /* see sqrt.c for detailed comments. */ long double sqrtl(long double x) { u128 ix, ml; uint64_t top; ix = asu128(x); top = ix.hi >> 48; if (predict_false(top - 0x0001 >= 0x7fff - 0x0001)) { /* x < 0x1p-16382 or inf or nan. */ if (2*ix.hi == 0 && ix.lo == 0) return x; if (ix.hi == 0x7fff000000000000 && ix.lo == 0) return x; if (top >= 0x7fff) return __math_invalidl(x); /* x is subnormal, normalize it. */ ix = asu128(x * 0x1p112); top = ix.hi >> 48; top -= 112; } /* x = 4^e m; with int e and m in [1, 4) */ int even = top & 1; ml = lsh(ix, 15); ml.hi |= 0x8000000000000000; if (even) ml = rsh(ml, 1); top = (top + 0x3fff) >> 1; /* r ~ 1/sqrt(m) */ const uint64_t three = 0xc0000000; uint64_t r, s, d, u, i; i = (ix.hi >> 42) % 128; r = (uint32_t)__rsqrt_tab[i] << 16; /* |r sqrt(m) - 1| < 0x1p-8 */ s = mul32(ml.hi>>32, r); d = mul32(s, r); u = three - d; r = mul32(u, r) << 1; /* |r sqrt(m) - 1| < 0x1.7bp-16, switch to 64bit */ r = r<<32; s = mul64(ml.hi, r); d = mul64(s, r); u = (three<<32) - d; r = mul64(u, r) << 1; /* |r sqrt(m) - 1| < 0x1.a5p-31 */ s = mul64(u, s) << 1; d = mul64(s, r); u = (three<<32) - d; r = mul64(u, r) << 1; /* |r sqrt(m) - 1| < 0x1.c001p-59, switch to 128bit */ const u128 threel = {.hi=three<<32, .lo=0}; u128 rl, sl, dl, ul; rl.hi = r; rl.lo = 0; sl = mul128(ml, rl); dl = mul128(sl, rl); ul = sub128(threel, dl); sl = mul128(ul, sl); /* repr: 3.125 */ /* -0x1p-116 < s - sqrt(m) < 0x3.8001p-125 */ sl = rsh(sub64(sl, 4), 125-(LDBL_MANT_DIG-1)); /* s < sqrt(m) < s + 1 ULP + tiny */ long double y; u128 d2, d1, d0; d0 = sub128(lsh(ml, 2*(LDBL_MANT_DIG-1)-126), mul128_tail(sl,sl)); d1 = sub128(sl, d0); d2 = add128(add64(sl, 1), d1); sl = add64(sl, d1.hi >> 63); y = mkldbl(top, sl); if (FENV_SUPPORT) { /* handle rounding modes and inexact exception. */ top = predict_false((d2.hi|d2.lo)==0) ? 0 : 1; top |= ((d1.hi^d2.hi)&0x8000000000000000) >> 48; y += mkldbl(top, (u128){0}); } return y; } #else #error unsupported long double format #endif