#include #include #include "libm.h" #include "sqrt_data.h" #define FENV_SUPPORT 1 static inline uint32_t mul32(uint32_t a, uint32_t b) { return (uint64_t)a*b >> 32; } /* see sqrt.c for more detailed comments. */ float sqrtf(float x) { uint32_t ix, m, m1, m0, even, ey; ix = asuint(x); if (predict_false(ix - 0x00800000 >= 0x7f800000 - 0x00800000)) { /* x < 0x1p-126 or inf or nan. */ if (ix * 2 == 0) return x; if (ix == 0x7f800000) return x; if (ix > 0x7f800000) return __math_invalidf(x); /* x is subnormal, normalize it. */ ix = asuint(x * 0x1p23f); ix -= 23 << 23; } /* x = 4^e m; with int e and m in [1, 4). */ even = ix & 0x00800000; m1 = (ix << 8) | 0x80000000; m0 = (ix << 7) & 0x7fffffff; m = even ? m0 : m1; /* 2^e is the exponent part of the return value. */ ey = ix >> 1; ey += 0x3f800000 >> 1; ey &= 0x7f800000; /* compute r ~ 1/sqrt(m), s ~ sqrt(m) with 2 goldschmidt iterations. */ static const uint32_t three = 0xc0000000; uint32_t r, s, d, u, i; i = (ix >> 17) % 128; r = (uint32_t)__rsqrt_tab[i] << 16; /* |r*sqrt(m) - 1| < 0x1p-8 */ s = mul32(m, r); /* |s/sqrt(m) - 1| < 0x1p-8 */ d = mul32(s, r); u = three - d; r = mul32(r, u) << 1; /* |r*sqrt(m) - 1| < 0x1.7bp-16 */ s = mul32(s, u) << 1; /* |s/sqrt(m) - 1| < 0x1.7bp-16 */ d = mul32(s, r); u = three - d; s = mul32(s, u); /* -0x1.03p-28 < s/sqrt(m) - 1 < 0x1.fp-31 */ s = (s - 1)>>6; /* s < sqrt(m) < s + 0x1.08p-23 */ /* compute nearest rounded result. */ uint32_t d0, d1, d2; float y, t; d0 = (m << 16) - s*s; d1 = s - d0; d2 = d1 + s + 1; s += d1 >> 31; s &= 0x007fffff; s |= ey; y = asfloat(s); if (FENV_SUPPORT) { /* handle rounding and inexact exception. */ uint32_t tiny = predict_false(d2==0) ? 0 : 0x01000000; tiny |= (d1^d2) & 0x80000000; t = asfloat(tiny); y = eval_as_float(y + t); } return y; }