/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */ /* * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ #define _GNU_SOURCE #include "libm.h" float jnf(int n, float x) { int32_t i,hx,ix, sgn; float a, b, temp, di; float z, w; /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) * Thus, J(-n,x) = J(n,-x) */ GET_FLOAT_WORD(hx, x); ix = 0x7fffffff & hx; /* if J(n,NaN) is NaN */ if (ix > 0x7f800000) return x+x; if (n < 0) { n = -n; x = -x; hx ^= 0x80000000; } if (n == 0) return j0f(x); if (n == 1) return j1f(x); sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */ x = fabsf(x); if (ix == 0 || ix >= 0x7f800000) /* if x is 0 or inf */ b = 0.0f; else if((float)n <= x) { /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ a = j0f(x); b = j1f(x); for (i=1; i 33) /* underflow */ b = 0.0f; else { temp = 0.5f * x; b = temp; for (a=1.0f,i=2; i<=n; i++) { a *= (float)i; /* a = n! */ b *= temp; /* b = (x/2)^n */ } b = b/a; } } else { /* use backward recurrence */ /* x x^2 x^2 * J(n,x)/J(n-1,x) = ---- ------ ------ ..... * 2n - 2(n+1) - 2(n+2) * * 1 1 1 * (for large x) = ---- ------ ------ ..... * 2n 2(n+1) 2(n+2) * -- - ------ - ------ - * x x x * * Let w = 2n/x and h=2/x, then the above quotient * is equal to the continued fraction: * 1 * = ----------------------- * 1 * w - ----------------- * 1 * w+h - --------- * w+2h - ... * * To determine how many terms needed, let * Q(0) = w, Q(1) = w(w+h) - 1, * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), * When Q(k) > 1e4 good for single * When Q(k) > 1e9 good for double * When Q(k) > 1e17 good for quadruple */ /* determine k */ float t,v; float q0,q1,h,tmp; int32_t k,m; w = (n+n)/x; h = 2.0f/x; z = w+h; q0 = w; q1 = w*z - 1.0f; k = 1; while (q1 < 1.0e9f) { k += 1; z += h; tmp = z*q1 - q0; q0 = q1; q1 = tmp; } m = n+n; for (t=0.0f, i = 2*(n+k); i>=m; i -= 2) t = 1.0f/(i/x-t); a = t; b = 1.0f; /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) * Hence, if n*(log(2n/x)) > ... * single 8.8722839355e+01 * double 7.09782712893383973096e+02 * long double 1.1356523406294143949491931077970765006170e+04 * then recurrent value may overflow and the result is * likely underflow to zero */ tmp = n; v = 2.0f/x; tmp = tmp*logf(fabsf(v*tmp)); if (tmp < 88.721679688f) { for (i=n-1,di=(float)(i+i); i>0; i--) { temp = b; b *= di; b = b/x - a; a = temp; di -= 2.0f; } } else { for (i=n-1,di=(float)(i+i); i>0; i--){ temp = b; b *= di; b = b/x - a; a = temp; di -= 2.0f; /* scale b to avoid spurious overflow */ if (b > 1e10f) { a /= b; t /= b; b = 1.0f; } } } z = j0f(x); w = j1f(x); if (fabsf(z) >= fabsf(w)) b = t*z/b; else b = t*w/a; } } if (sgn == 1) return -b; return b; } float ynf(int n, float x) { int32_t i,hx,ix,ib; int32_t sign; float a, b, temp; GET_FLOAT_WORD(hx, x); ix = 0x7fffffff & hx; /* if Y(n,NaN) is NaN */ if (ix > 0x7f800000) return x+x; if (ix == 0) return -1.0f/0.0f; if (hx < 0) return 0.0f/0.0f; sign = 1; if (n < 0) { n = -n; sign = 1 - ((n&1)<<1); } if (n == 0) return y0f(x); if (n == 1) return sign*y1f(x); if (ix == 0x7f800000) return 0.0f; a = y0f(x); b = y1f(x); /* quit if b is -inf */ GET_FLOAT_WORD(ib,b); for (i = 1; i < n && ib != 0xff800000; i++){ temp = b; b = ((float)(i+i)/x)*b - a; GET_FLOAT_WORD(ib, b); a = temp; } if (sign > 0) return b; return -b; }