/* origin: FreeBSD /usr/src/lib/msun/src/e_fmodl.c */ /*- * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ #include "libm.h" #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 long double fmodl(long double x, long double y) { return fmod(x, y); } #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384 #define BIAS (LDBL_MAX_EXP - 1) #if LDBL_MANL_SIZE > 32 typedef uint64_t manl_t; #else typedef uint32_t manl_t; #endif #if LDBL_MANH_SIZE > 32 typedef uint64_t manh_t; #else typedef uint32_t manh_t; #endif /* * These macros add and remove an explicit integer bit in front of the * fractional mantissa, if the architecture doesn't have such a bit by * default already. */ #ifdef LDBL_IMPLICIT_NBIT #define SET_NBIT(hx) ((hx) | (1ULL << LDBL_MANH_SIZE)) #define HFRAC_BITS LDBL_MANH_SIZE #else #define SET_NBIT(hx) (hx) #define HFRAC_BITS (LDBL_MANH_SIZE - 1) #endif #define MANL_SHIFT (LDBL_MANL_SIZE - 1) static const long double Zero[] = {0.0, -0.0,}; /* * fmodl(x,y) * Return x mod y in exact arithmetic * Method: shift and subtract * * Assumptions: * - The low part of the mantissa fits in a manl_t exactly. * - The high part of the mantissa fits in an int64_t with enough room * for an explicit integer bit in front of the fractional bits. */ long double fmodl(long double x, long double y) { union IEEEl2bits ux, uy; int64_t hx,hz; /* We need a carry bit even if LDBL_MANH_SIZE is 32. */ manh_t hy; manl_t lx,ly,lz; int ix,iy,n,sx; ux.e = x; uy.e = y; sx = ux.bits.sign; /* purge off exception values */ if ((uy.bits.exp|uy.bits.manh|uy.bits.manl) == 0 || /* y=0 */ ux.bits.exp == BIAS + LDBL_MAX_EXP || /* or x not finite */ (uy.bits.exp == BIAS + LDBL_MAX_EXP && ((uy.bits.manh&~LDBL_NBIT)|uy.bits.manl) != 0)) /* or y is NaN */ return (x*y)/(x*y); if (ux.bits.exp <= uy.bits.exp) { if (ux.bits.exp < uy.bits.exp || (ux.bits.manh<=uy.bits.manh && (ux.bits.manh>MANL_SHIFT); lx = lx+lx; } else { if ((hz|lz)==0) /* return sign(x)*0 */ return Zero[sx]; hx = hz+hz+(lz>>MANL_SHIFT); lx = lz+lz; } } hz = hx-hy; lz = lx-ly; if (lx < ly) hz -= 1; if (hz >= 0) { hx = hz; lx = lz; } /* convert back to floating value and restore the sign */ if ((hx|lx) == 0) /* return sign(x)*0 */ return Zero[sx]; while (hx < (1ULL<>MANL_SHIFT); lx = lx+lx; iy -= 1; } ux.bits.manh = hx; /* The mantissa is truncated here if needed. */ ux.bits.manl = lx; if (iy < LDBL_MIN_EXP) { ux.bits.exp = iy + (BIAS + 512); ux.e *= 0x1p-512; } else { ux.bits.exp = iy + BIAS; } return ux.e; /* exact output */ } #endif