/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_expm1l.c */ /* * Copyright (c) 2008 Stephen L. Moshier * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Exponential function, minus 1 * Long double precision * * * SYNOPSIS: * * long double x, y, expm1l(); * * y = expm1l( x ); * * * DESCRIPTION: * * Returns e (2.71828...) raised to the x power, minus 1. * * Range reduction is accomplished by separating the argument * into an integer k and fraction f such that * * x k f * e = 2 e. * * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1 * in the basic range [-0.5 ln 2, 0.5 ln 2]. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -45,+MAXLOG 200,000 1.2e-19 2.5e-20 * * ERROR MESSAGES: * * message condition value returned * expm1l overflow x > MAXLOG MAXNUM * */ #include "libm.h" #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 long double expm1l(long double x) { return expm1(x); } #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 static const long double MAXLOGL = 1.1356523406294143949492E4L; /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x) -.5 ln 2 < x < .5 ln 2 Theoretical peak relative error = 3.4e-22 */ static const long double P0 = -1.586135578666346600772998894928250240826E4L, P1 = 2.642771505685952966904660652518429479531E3L, P2 = -3.423199068835684263987132888286791620673E2L, P3 = 1.800826371455042224581246202420972737840E1L, P4 = -5.238523121205561042771939008061958820811E-1L, Q0 = -9.516813471998079611319047060563358064497E4L, Q1 = 3.964866271411091674556850458227710004570E4L, Q2 = -7.207678383830091850230366618190187434796E3L, Q3 = 7.206038318724600171970199625081491823079E2L, Q4 = -4.002027679107076077238836622982900945173E1L, /* Q5 = 1.000000000000000000000000000000000000000E0 */ /* C1 + C2 = ln 2 */ C1 = 6.93145751953125E-1L, C2 = 1.428606820309417232121458176568075500134E-6L, /* ln 2^-65 */ minarg = -4.5054566736396445112120088E1L, huge = 0x1p10000L; long double expm1l(long double x) { long double px, qx, xx; int k; /* Overflow. */ if (x > MAXLOGL) return huge*huge; /* overflow */ if (x == 0.0) return x; /* Minimum value.*/ if (x < minarg) return -1.0; xx = C1 + C2; /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */ px = floorl(0.5 + x / xx); k = px; /* remainder times ln 2 */ x -= px * C1; x -= px * C2; /* Approximate exp(remainder ln 2).*/ px = (((( P4 * x + P3) * x + P2) * x + P1) * x + P0) * x; qx = (((( x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0; xx = x * x; qx = x + (0.5 * xx + xx * px / qx); /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2). We have qx = exp(remainder ln 2) - 1, so exp(x) - 1 = 2^k (qx + 1) - 1 = 2^k qx + 2^k - 1. */ px = scalbnl(1.0, k); x = px * qx + (px - 1.0); return x; } #endif