/* origin: FreeBSD /usr/src/lib/msun/src/e_exp.c */ /* * ==================================================== * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. * * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* exp(x) * Returns the exponential of x. * * Method * 1. Argument reduction: * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. * Given x, find r and integer k such that * * x = k*ln2 + r, |r| <= 0.5*ln2. * * Here r will be represented as r = hi-lo for better * accuracy. * * 2. Approximation of exp(r) by a special rational function on * the interval [0,0.34658]: * Write * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... * We use a special Remez algorithm on [0,0.34658] to generate * a polynomial of degree 5 to approximate R. The maximum error * of this polynomial approximation is bounded by 2**-59. In * other words, * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 * (where z=r*r, and the values of P1 to P5 are listed below) * and * | 5 | -59 * | 2.0+P1*z+...+P5*z - R(z) | <= 2 * | | * The computation of exp(r) thus becomes * 2*r * exp(r) = 1 + ---------- * R(r) - r * r*c(r) * = 1 + r + ----------- (for better accuracy) * 2 - c(r) * where * 2 4 10 * c(r) = r - (P1*r + P2*r + ... + P5*r ). * * 3. Scale back to obtain exp(x): * From step 1, we have * exp(x) = 2^k * exp(r) * * Special cases: * exp(INF) is INF, exp(NaN) is NaN; * exp(-INF) is 0, and * for finite argument, only exp(0)=1 is exact. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Misc. info. * For IEEE double * if x > 709.782712893383973096 then exp(x) overflows * if x < -745.133219101941108420 then exp(x) underflows */ #include "libm.h" static const double half[2] = {0.5,-0.5}, ln2hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ ln2lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ double exp(double x) { double hi, lo, c, xx; int k, sign; uint32_t hx; GET_HIGH_WORD(hx, x); sign = hx>>31; hx &= 0x7fffffff; /* high word of |x| */ /* special cases */ if (hx >= 0x40862e42) { /* if |x| >= 709.78... */ if (isnan(x)) return x; if (hx == 0x7ff00000 && sign) /* -inf */ return 0; if (x > 709.782712893383973096) { /* overflow if x!=inf */ STRICT_ASSIGN(double, x, 0x1p1023 * x); return x; } if (x < -745.13321910194110842) { /* underflow */ STRICT_ASSIGN(double, x, 0x1p-1000 * 0x1p-1000); return x; } } /* argument reduction */ if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ if (hx >= 0x3ff0a2b2) /* if |x| >= 1.5 ln2 */ k = (int)(invln2*x + half[sign]); else k = 1 - sign - sign; hi = x - k*ln2hi; /* k*ln2hi is exact here */ lo = k*ln2lo; STRICT_ASSIGN(double, x, hi - lo); } else if (hx > 0x3e300000) { /* if |x| > 2**-28 */ k = 0; hi = x; lo = 0; } else { /* inexact if x!=0 */ FORCE_EVAL(0x1p1023 + x); return 1 + x; } /* x is now in primary range */ xx = x*x; c = x - xx*(P1+xx*(P2+xx*(P3+xx*(P4+xx*P5)))); x = 1 + (x*c/(2-c) - lo + hi); if (k == 0) return x; return scalbn(x, k); }