Age | Commit message (Collapse) | Author | Lines |
|
in order to implement ENOTRECOVERABLE, the implementation has
traditionally used a bit of the mutex type field to indicate that it's
recovered after EOWNERDEAD and will go into ENOTRECOVERABLE state if
pthread_mutex_consistent is not called before unlocking. while it's
only the thread that holds the lock that needs access to this
information (except possibly for the sake of pthread_mutex_consistent
choosing between EINVAL and EPERM for erroneous calls), the change to
the type field is formally a data race with all other threads that
perform any operation on the mutex. no individual bits race, and no
write races are possible, so things are "okay" in some sense, but it's
still not good.
this patch moves the recovery/consistency state to the mutex
owner/lock field which is rightfully mutable. bit 30, the same bit the
kernel uses with a zero owner to indicate that the previous owner died
holding the lock, is now used with a nonzero owner to indicate that
the mutex is held but has not yet been marked consistent. note that
the kernel ABI also reserves bit 29 not to appear in any tid, so the
sentinel value we use for ENOTRECOVERABLE, 0x7fffffff, does not clash
with any tid plus bit 30.
|
|
a robust mutex should not enter the unrecoverable status until it's
unlocked without marking it consistent. previously, flag 8 in the type
was used as an indication of unrecoverable, but only honored after
successful locking; this resulted in a race window where the
unrecoverable mutex could appear to a second thread as locked/busy
again while the first thread was in the process of observing it as
unrecoverable.
now, flag 8 is used to mean that the mutex is in the process of being
recovered, but not yet marked consistent. the flag only takes effect
in pthread_mutex_unlock, where it causes the value 0x40000000 (owner
dead flag, with old owner tid 0, an otherwise impossible state) to be
stored in the lock. subsequent lock attempts will interpret this state
as unrecoverable.
|
|
per the resolution of Austin Group issue 755, the POSIX requirement
that ownership be enforced for recursive and error-checking mutexes
does not allow a random new thread to acquire ownership of an orphaned
mutex just because it happened to be assigned the same tid as the
original owner that exited with the mutex locked.
one possible fix for this issue would be to disallow the kernel thread
to terminate when it exited with mutexes held, permanently reserving
the tid against reuse. however, this does not solve the problem for
process-shared mutexes where lifetime cannot be controlled, so it was
not used.
the alternate approach I've taken is to reuse the robust mutex system
for non-robust recursive and error-checking mutexes. when a thread
exits, the kernel (or the new userspace robust-list code added in
commit b092f1c5fa9c048e12d002c7b972df5ecbe96d1d) will set the
owner-died bit for these orphaned mutexes, but since the mutex-type is
not robust, pthread_mutex_trylock will not allow a new owner to
acquire them. instead, they remain in a state of being permanently
locked, as desired.
|
|
private-futex uses the virtual address of the futex int directly as
the hash key rather than requiring the kernel to resolve the address
to an underlying backing for the mapping in which it lies. for certain
usage patterns it improves performance significantly.
in many places, the code using futex __wake and __wait operations was
already passing a correct fixed zero or nonzero flag for the priv
argument, so no change was needed at the site of the call, only in the
__wake and __wait functions themselves. in other places, especially
where the process-shared attribute for a synchronization object was
not previously tracked, additional new code is needed. for mutexes,
the only place to store the flag is in the type field, so additional
bit masking logic is needed for accessing the type.
for non-process-shared condition variable broadcasts, the futex
requeue operation is unable to requeue from a private futex to a
process-shared one in the mutex structure, so requeue is simply
disabled in this case by waking all waiters.
for robust mutexes, the kernel always performs a non-private wake when
the owner dies. in order not to introduce a behavioral regression in
non-process-shared robust mutexes (when the owning thread dies), they
are simply forced to be treated as process-shared for now, giving
correct behavior at the expense of performance. this can be fixed by
adding explicit code to pthread_exit to do the right thing for
non-shared robust mutexes in userspace rather than relying on the
kernel to do it, and will be fixed in this way later.
since not all supported kernels have private futex support, the new
code detects EINVAL from the futex syscall and falls back to making
the call without the private flag. no attempt to cache the result is
made; caching it and using the cached value efficiently is somewhat
difficult, and not worth the complexity when the benefits would be
seen only on ancient kernels which have numerous other limitations and
bugs anyway.
|
|
prior to version 1.1.0, the difference between pthread_self (the
public function) and __pthread_self (the internal macro or inline
function) was that the former would lazily initialize the thread
pointer if it was not already initialized, whereas the latter would
crash in this case. since lazy initialization is no longer supported,
use of pthread_self no longer makes sense; it simply generates larger,
slower code.
|
|
some of this code should be cleaned up, e.g. using macros for some of
the bit flags, masks, etc. nonetheless, the code is believed to be
working and correct at this point.
|