diff options
Diffstat (limited to 'src/math/log.c')
| -rw-r--r-- | src/math/log.c | 140 | 
1 files changed, 140 insertions, 0 deletions
diff --git a/src/math/log.c b/src/math/log.c new file mode 100644 index 00000000..1bb006a3 --- /dev/null +++ b/src/math/log.c @@ -0,0 +1,140 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_log.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* log(x) + * Return the logrithm of x + * + * Method : + *   1. Argument Reduction: find k and f such that + *                      x = 2^k * (1+f), + *         where  sqrt(2)/2 < 1+f < sqrt(2) . + * + *   2. Approximation of log(1+f). + *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) + *               = 2s + 2/3 s**3 + 2/5 s**5 + ....., + *               = 2s + s*R + *      We use a special Remez algorithm on [0,0.1716] to generate + *      a polynomial of degree 14 to approximate R The maximum error + *      of this polynomial approximation is bounded by 2**-58.45. In + *      other words, + *                      2      4      6      8      10      12      14 + *          R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s + *      (the values of Lg1 to Lg7 are listed in the program) + *      and + *          |      2          14          |     -58.45 + *          | Lg1*s +...+Lg7*s    -  R(z) | <= 2 + *          |                             | + *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. + *      In order to guarantee error in log below 1ulp, we compute log + *      by + *              log(1+f) = f - s*(f - R)        (if f is not too large) + *              log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy) + * + *      3. Finally,  log(x) = k*ln2 + log(1+f). + *                          = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) + *         Here ln2 is split into two floating point number: + *                      ln2_hi + ln2_lo, + *         where n*ln2_hi is always exact for |n| < 2000. + * + * Special cases: + *      log(x) is NaN with signal if x < 0 (including -INF) ; + *      log(+INF) is +INF; log(0) is -INF with signal; + *      log(NaN) is that NaN with no signal. + * + * Accuracy: + *      according to an error analysis, the error is always less than + *      1 ulp (unit in the last place). + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include "libm.h" + +static const double +ln2_hi = 6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */ +ln2_lo = 1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */ +two54  = 1.80143985094819840000e+16,  /* 43500000 00000000 */ +Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */ +Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */ +Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */ +Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */ +Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */ +Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */ +Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */ + +static const double zero = 0.0; + +double log(double x) +{ +	double hfsq,f,s,z,R,w,t1,t2,dk; +	int32_t k,hx,i,j; +	uint32_t lx; + +	EXTRACT_WORDS(hx, lx, x); + +	k = 0; +	if (hx < 0x00100000) {  /* x < 2**-1022  */ +		if (((hx&0x7fffffff)|lx) == 0) +			return -two54/zero;  /* log(+-0)=-inf */ +		if (hx < 0) +			return (x-x)/zero;   /* log(-#) = NaN */ +		/* subnormal number, scale up x */ +		k -= 54; +		x *= two54; +		GET_HIGH_WORD(hx,x); +	} +	if (hx >= 0x7ff00000) +		return x+x; +	k += (hx>>20) - 1023; +	hx &= 0x000fffff; +	i = (hx+0x95f64)&0x100000; +	SET_HIGH_WORD(x, hx|(i^0x3ff00000));  /* normalize x or x/2 */ +	k += i>>20; +	f = x - 1.0; +	if ((0x000fffff&(2+hx)) < 3) {  /* -2**-20 <= f < 2**-20 */ +		if (f == zero) { +			if (k == 0) { +				return zero; +			} +			dk = (double)k; +			return dk*ln2_hi + dk*ln2_lo; +		} +		R = f*f*(0.5-0.33333333333333333*f); +		if (k == 0) +			return f - R; +		dk = (double)k; +		return dk*ln2_hi - ((R-dk*ln2_lo)-f); +	} +	s = f/(2.0+f); +	dk = (double)k; +	z = s*s; +	i = hx - 0x6147a; +	w = z*z; +	j = 0x6b851 - hx; +	t1 = w*(Lg2+w*(Lg4+w*Lg6)); +	t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); +	i |= j; +	R = t2 + t1; +	if (i > 0) { +		hfsq = 0.5*f*f; +		if (k == 0) +			return f - (hfsq-s*(hfsq+R)); +		return dk*ln2_hi - ((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); +	} else { +		if (k == 0) +			return f - s*(f-R); +		return dk*ln2_hi - ((s*(f-R)-dk*ln2_lo)-f); +	} +}  | 
