diff options
Diffstat (limited to 'src/math/k_rem_pio2.c')
| -rw-r--r-- | src/math/k_rem_pio2.c | 300 | 
1 files changed, 0 insertions, 300 deletions
diff --git a/src/math/k_rem_pio2.c b/src/math/k_rem_pio2.c deleted file mode 100644 index d993e4f2..00000000 --- a/src/math/k_rem_pio2.c +++ /dev/null @@ -1,300 +0,0 @@ - -/* @(#)k_rem_pio2.c 1.3 95/01/18 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunSoft, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice  - * is preserved. - * ==================================================== - */ - -/* - * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) - * double x[],y[]; int e0,nx,prec; int ipio2[]; - *  - * __kernel_rem_pio2 return the last three digits of N with  - *              y = x - N*pi/2 - * so that |y| < pi/2. - * - * The method is to compute the integer (mod 8) and fraction parts of  - * (2/pi)*x without doing the full multiplication. In general we - * skip the part of the product that are known to be a huge integer ( - * more accurately, = 0 mod 8 ). Thus the number of operations are - * independent of the exponent of the input. - * - * (2/pi) is represented by an array of 24-bit integers in ipio2[]. - * - * Input parameters: - *      x[]     The input value (must be positive) is broken into nx  - *              pieces of 24-bit integers in double precision format. - *              x[i] will be the i-th 24 bit of x. The scaled exponent  - *              of x[0] is given in input parameter e0 (i.e., x[0]*2^e0  - *              match x's up to 24 bits. - * - *              Example of breaking a double positive z into x[0]+x[1]+x[2]: - *                      e0 = ilogb(z)-23 - *                      z  = scalbn(z,-e0) - *              for i = 0,1,2 - *                      x[i] = floor(z) - *                      z    = (z-x[i])*2**24 - * - * - *      y[]     ouput result in an array of double precision numbers. - *              The dimension of y[] is: - *                      24-bit  precision       1 - *                      53-bit  precision       2 - *                      64-bit  precision       2 - *                      113-bit precision       3 - *              The actual value is the sum of them. Thus for 113-bit - *              precison, one may have to do something like: - * - *              long double t,w,r_head, r_tail; - *              t = (long double)y[2] + (long double)y[1]; - *              w = (long double)y[0]; - *              r_head = t+w; - *              r_tail = w - (r_head - t); - * - *      e0      The exponent of x[0] - * - *      nx      dimension of x[] - * - *      prec    an integer indicating the precision: - *                      0       24  bits (single) - *                      1       53  bits (double) - *                      2       64  bits (extended) - *                      3       113 bits (quad) - * - *      ipio2[] - *              integer array, contains the (24*i)-th to (24*i+23)-th  - *              bit of 2/pi after binary point. The corresponding  - *              floating value is - * - *                      ipio2[i] * 2^(-24(i+1)). - * - * External function: - *      double scalbn(), floor(); - * - * - * Here is the description of some local variables: - * - *      jk      jk+1 is the initial number of terms of ipio2[] needed - *              in the computation. The recommended value is 2,3,4, - *              6 for single, double, extended,and quad. - * - *      jz      local integer variable indicating the number of  - *              terms of ipio2[] used.  - * - *      jx      nx - 1 - * - *      jv      index for pointing to the suitable ipio2[] for the - *              computation. In general, we want - *                      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 - *              is an integer. Thus - *                      e0-3-24*jv >= 0 or (e0-3)/24 >= jv - *              Hence jv = max(0,(e0-3)/24). - * - *      jp      jp+1 is the number of terms in PIo2[] needed, jp = jk. - * - *      q[]     double array with integral value, representing the - *              24-bits chunk of the product of x and 2/pi. - * - *      q0      the corresponding exponent of q[0]. Note that the - *              exponent for q[i] would be q0-24*i. - * - *      PIo2[]  double precision array, obtained by cutting pi/2 - *              into 24 bits chunks.  - * - *      f[]     ipio2[] in floating point  - * - *      iq[]    integer array by breaking up q[] in 24-bits chunk. - * - *      fq[]    final product of x*(2/pi) in fq[0],..,fq[jk] - * - *      ih      integer. If >0 it indicates q[] is >= 0.5, hence - *              it also indicates the *sign* of the result. - * - */ - - -/* - * Constants: - * The hexadecimal values are the intended ones for the following  - * constants. The decimal values may be used, provided that the  - * compiler will convert from decimal to binary accurately enough  - * to produce the hexadecimal values shown. - */ - -#include <math.h> -#include "math_private.h" - -static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ - -static const double PIo2[] = { -  1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ -  7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ -  5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ -  3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ -  1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ -  1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ -  2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ -  2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ -}; - -static const double                      -zero   = 0.0, -one    = 1.0, -two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ -twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ - -        int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2) -{ -        int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; -        double z,fw,f[20],fq[20],q[20]; - -    /* initialize jk*/ -        jk = init_jk[prec]; -        jp = jk; - -    /* determine jx,jv,q0, note that 3>q0 */ -        jx =  nx-1; -        jv = (e0-3)/24; if(jv<0) jv=0; -        q0 =  e0-24*(jv+1); - -    /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ -        j = jv-jx; m = jx+jk; -        for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; - -    /* compute q[0],q[1],...q[jk] */ -        for (i=0;i<=jk;i++) { -            for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; -        } - -        jz = jk; -recompute: -    /* distill q[] into iq[] reversingly */ -        for(i=0,j=jz,z=q[jz];j>0;i++,j--) { -            fw    =  (double)((int32_t)(twon24* z)); -            iq[i] =  (int32_t)(z-two24*fw); -            z     =  q[j-1]+fw; -        } - -    /* compute n */ -        z  = scalbn(z,q0);              /* actual value of z */ -        z -= 8.0*floor(z*0.125);                /* trim off integer >= 8 */ -        n  = (int32_t) z; -        z -= (double)n; -        ih = 0; -        if(q0>0) {      /* need iq[jz-1] to determine n */ -            i  = (iq[jz-1]>>(24-q0)); n += i; -            iq[jz-1] -= i<<(24-q0); -            ih = iq[jz-1]>>(23-q0); -        }  -        else if(q0==0) ih = iq[jz-1]>>23; -        else if(z>=0.5) ih=2; - -        if(ih>0) {      /* q > 0.5 */ -            n += 1; carry = 0; -            for(i=0;i<jz ;i++) {        /* compute 1-q */ -                j = iq[i]; -                if(carry==0) { -                    if(j!=0) { -                        carry = 1; iq[i] = 0x1000000- j; -                    } -                } else  iq[i] = 0xffffff - j; -            } -            if(q0>0) {          /* rare case: chance is 1 in 12 */ -                switch(q0) { -                case 1: -                   iq[jz-1] &= 0x7fffff; break; -                case 2: -                   iq[jz-1] &= 0x3fffff; break; -                } -            } -            if(ih==2) { -                z = one - z; -                if(carry!=0) z -= scalbn(one,q0); -            } -        } - -    /* check if recomputation is needed */ -        if(z==zero) { -            j = 0; -            for (i=jz-1;i>=jk;i--) j |= iq[i]; -            if(j==0) { /* need recomputation */ -                for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */ - -                for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */ -                    f[jx+i] = (double) ipio2[jv+i]; -                    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; -                    q[i] = fw; -                } -                jz += k; -                goto recompute; -            } -        } - -    /* chop off zero terms */ -        if(z==0.0) { -            jz -= 1; q0 -= 24; -            while(iq[jz]==0) { jz--; q0-=24;} -        } else { /* break z into 24-bit if necessary */ -            z = scalbn(z,-q0); -            if(z>=two24) {  -                fw = (double)((int32_t)(twon24*z)); -                iq[jz] = (int32_t)(z-two24*fw); -                jz += 1; q0 += 24; -                iq[jz] = (int32_t) fw; -            } else iq[jz] = (int32_t) z ; -        } - -    /* convert integer "bit" chunk to floating-point value */ -        fw = scalbn(one,q0); -        for(i=jz;i>=0;i--) { -            q[i] = fw*(double)iq[i]; fw*=twon24; -        } - -    /* compute PIo2[0,...,jp]*q[jz,...,0] */ -        for(i=jz;i>=0;i--) { -            for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; -            fq[jz-i] = fw; -        } - -    /* compress fq[] into y[] */ -        switch(prec) { -            case 0: -                fw = 0.0; -                for (i=jz;i>=0;i--) fw += fq[i]; -                y[0] = (ih==0)? fw: -fw;  -                break; -            case 1: -            case 2: -                fw = 0.0; -                for (i=jz;i>=0;i--) fw += fq[i];  -                y[0] = (ih==0)? fw: -fw;  -                fw = fq[0]-fw; -                for (i=1;i<=jz;i++) fw += fq[i]; -                y[1] = (ih==0)? fw: -fw;  -                break; -            case 3:     /* painful */ -                for (i=jz;i>0;i--) { -                    fw      = fq[i-1]+fq[i];  -                    fq[i]  += fq[i-1]-fw; -                    fq[i-1] = fw; -                } -                for (i=jz;i>1;i--) { -                    fw      = fq[i-1]+fq[i];  -                    fq[i]  += fq[i-1]-fw; -                    fq[i-1] = fw; -                } -                for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];  -                if(ih==0) { -                    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw; -                } else { -                    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; -                } -        } -        return n&7; -}  | 
