diff options
Diffstat (limited to 'src/math/hypot.c')
| -rw-r--r-- | src/math/hypot.c | 174 | 
1 files changed, 59 insertions, 115 deletions
| diff --git a/src/math/hypot.c b/src/math/hypot.c index 9a4cbdb3..29ec6a47 100644 --- a/src/math/hypot.c +++ b/src/math/hypot.c @@ -1,123 +1,67 @@ -/* origin: FreeBSD /usr/src/lib/msun/src/e_hypot.c */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunSoft, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ -/* hypot(x,y) - * - * Method : - *      If (assume round-to-nearest) z=x*x+y*y - *      has error less than sqrt(2)/2 ulp, then - *      sqrt(z) has error less than 1 ulp (exercise). - * - *      So, compute sqrt(x*x+y*y) with some care as - *      follows to get the error below 1 ulp: - * - *      Assume x>y>0; - *      (if possible, set rounding to round-to-nearest) - *      1. if x > 2y  use - *              x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y - *      where x1 = x with lower 32 bits cleared, x2 = x-x1; else - *      2. if x <= 2y use - *              t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) - *      where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1, - *      y1= y with lower 32 bits chopped, y2 = y-y1. - * - *      NOTE: scaling may be necessary if some argument is too - *            large or too tiny - * - * Special cases: - *      hypot(x,y) is INF if x or y is +INF or -INF; else - *      hypot(x,y) is NAN if x or y is NAN. - * - * Accuracy: - *      hypot(x,y) returns sqrt(x^2+y^2) with error less - *      than 1 ulps (units in the last place) - */ +#include <math.h> +#include <stdint.h> +#include <float.h> -#include "libm.h" +#if FLT_EVAL_METHOD > 1U && LDBL_MANT_DIG == 64 +#define SPLIT (0x1p32 + 1) +#else +#define SPLIT (0x1p27 + 1) +#endif + +static void sq(double_t *hi, double_t *lo, double x) +{ +	double_t xh, xl, xc; + +	xc = x*SPLIT; +	xh = x - xc + xc; +	xl = x - xh; +	*hi = x*x; +	*lo = xh*xh - *hi + 2*xh*xl + xl*xl; +}  double hypot(double x, double y)  { -	double a,b,t1,t2,y1,y2,w; -	int32_t j,k,ha,hb; +	union {double f; uint64_t i;} ux = {x}, uy = {y}, ut; +	int ex, ey; +	double_t hx, lx, hy, ly, z; -	GET_HIGH_WORD(ha, x); -	ha &= 0x7fffffff; -	GET_HIGH_WORD(hb, y); -	hb &= 0x7fffffff; -	if (hb > ha) { -		a = y; -		b = x; -		j=ha; ha=hb; hb=j; -	} else { -		a = x; -		b = y; +	/* arrange |x| >= |y| */ +	ux.i &= -1ULL>>1; +	uy.i &= -1ULL>>1; +	if (ux.i < uy.i) { +		ut = ux; +		ux = uy; +		uy = ut;  	} -	a = fabs(a); -	b = fabs(b); -	if (ha - hb > 0x3c00000)  /* x/y > 2**60 */ -		return a+b; -	k = 0; -	if (ha > 0x5f300000) {    /* a > 2**500 */ -		if(ha >= 0x7ff00000) {  /* Inf or NaN */ -			uint32_t low; -			/* Use original arg order iff result is NaN; quieten sNaNs. */ -			w = fabs(x+0.0) - fabs(y+0.0); -			GET_LOW_WORD(low, a); -			if (((ha&0xfffff)|low) == 0) w = a; -			GET_LOW_WORD(low, b); -			if (((hb^0x7ff00000)|low) == 0) w = b; -			return w; -		} -		/* scale a and b by 2**-600 */ -		ha -= 0x25800000; hb -= 0x25800000;  k += 600; -		SET_HIGH_WORD(a, ha); -		SET_HIGH_WORD(b, hb); -	} -	if (hb < 0x20b00000) {    /* b < 2**-500 */ -		if (hb <= 0x000fffff) {  /* subnormal b or 0 */ -			uint32_t low; -			GET_LOW_WORD(low, b); -			if ((hb|low) == 0) -				return a; -			t1 = 0; -			SET_HIGH_WORD(t1, 0x7fd00000);  /* t1 = 2^1022 */ -			b *= t1; -			a *= t1; -			k -= 1022; -		} else {            /* scale a and b by 2^600 */ -			ha += 0x25800000;  /* a *= 2^600 */ -			hb += 0x25800000;  /* b *= 2^600 */ -			k -= 600; -			SET_HIGH_WORD(a, ha); -			SET_HIGH_WORD(b, hb); -		} -	} -	/* medium size a and b */ -	w = a - b; -	if (w > b) { -		t1 = 0; -		SET_HIGH_WORD(t1, ha); -		t2 = a-t1; -		w  = sqrt(t1*t1-(b*(-b)-t2*(a+t1))); -	} else { -		a  = a + a; -		y1 = 0; -		SET_HIGH_WORD(y1, hb); -		y2 = b - y1; -		t1 = 0; -		SET_HIGH_WORD(t1, ha+0x00100000); -		t2 = a - t1; -		w  = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b))); + +	/* special cases */ +	ex = ux.i>>52; +	ey = uy.i>>52; +	x = ux.f; +	y = uy.f; +	/* note: hypot(inf,nan) == inf */ +	if (ey == 0x7ff) +		return y; +	if (ex == 0x7ff || uy.i == 0) +		return x; +	/* note: hypot(x,y) ~= x + y*y/x/2 with inexact for small y/x */ +	/* 64 difference is enough for ld80 double_t */ +	if (ex - ey > 64) +		return x + y; + +	/* precise sqrt argument in nearest rounding mode without overflow */ +	/* xh*xh must not overflow and xl*xl must not underflow in sq */ +	z = 1; +	if (ex > 0x3ff+510) { +		z = 0x1p700; +		x *= 0x1p-700; +		y *= 0x1p-700; +	} else if (ey < 0x3ff-450) { +		z = 0x1p-700; +		x *= 0x1p700; +		y *= 0x1p700;  	} -	if (k) -		w = scalbn(w, k); -	return w; +	sq(&hx, &lx, x); +	sq(&hy, &ly, y); +	return z*sqrt(ly+lx+hy+hx);  } | 
