diff options
Diffstat (limited to 'src/math/expm1l.c')
| -rw-r--r-- | src/math/expm1l.c | 123 | 
1 files changed, 123 insertions, 0 deletions
diff --git a/src/math/expm1l.c b/src/math/expm1l.c new file mode 100644 index 00000000..2f94dfa2 --- /dev/null +++ b/src/math/expm1l.c @@ -0,0 +1,123 @@ +/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_expm1l.c */ +/* + * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ +/* + *      Exponential function, minus 1 + *      Long double precision + * + * + * SYNOPSIS: + * + * long double x, y, expm1l(); + * + * y = expm1l( x ); + * + * + * DESCRIPTION: + * + * Returns e (2.71828...) raised to the x power, minus 1. + * + * Range reduction is accomplished by separating the argument + * into an integer k and fraction f such that + * + *     x    k  f + *    e  = 2  e. + * + * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1 + * in the basic range [-0.5 ln 2, 0.5 ln 2]. + * + * + * ACCURACY: + * + *                      Relative error: + * arithmetic   domain     # trials      peak         rms + *    IEEE    -45,+MAXLOG   200,000     1.2e-19     2.5e-20 + * + * ERROR MESSAGES: + * + *   message         condition      value returned + * expm1l overflow   x > MAXLOG         MAXNUM + * + */ + +#include "libm.h" + +#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 +long double expm1l(long double x) +{ +	return expm1(x); +} +#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 +static const long double MAXLOGL = 1.1356523406294143949492E4L; + +/* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x) +   -.5 ln 2  <  x  <  .5 ln 2 +   Theoretical peak relative error = 3.4e-22  */ +static const long double +P0 = -1.586135578666346600772998894928250240826E4L, +P1 =  2.642771505685952966904660652518429479531E3L, +P2 = -3.423199068835684263987132888286791620673E2L, +P3 =  1.800826371455042224581246202420972737840E1L, +P4 = -5.238523121205561042771939008061958820811E-1L, +Q0 = -9.516813471998079611319047060563358064497E4L, +Q1 =  3.964866271411091674556850458227710004570E4L, +Q2 = -7.207678383830091850230366618190187434796E3L, +Q3 =  7.206038318724600171970199625081491823079E2L, +Q4 = -4.002027679107076077238836622982900945173E1L, +/* Q5 = 1.000000000000000000000000000000000000000E0 */ +/* C1 + C2 = ln 2 */ +C1 = 6.93145751953125E-1L, +C2 = 1.428606820309417232121458176568075500134E-6L, +/* ln 2^-65 */ +minarg = -4.5054566736396445112120088E1L, +huge = 0x1p10000L; + +long double expm1l(long double x) +{ +	long double px, qx, xx; +	int k; + +	/* Overflow.  */ +	if (x > MAXLOGL) +		return huge*huge;  /* overflow */ +	if (x == 0.0) +		return x; +	/* Minimum value.*/ +	if (x < minarg) +		return -1.0L; + +	xx = C1 + C2; +	/* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */ +	px = floorl (0.5 + x / xx); +	k = px; +	/* remainder times ln 2 */ +	x -= px * C1; +	x -= px * C2; + +	/* Approximate exp(remainder ln 2).*/ +	px = (((( P4 * x + P3) * x + P2) * x + P1) * x + P0) * x; +	qx = (((( x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0; +	xx = x * x; +	qx = x + (0.5 * xx + xx * px / qx); + +	/* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2). +	 We have qx = exp(remainder ln 2) - 1, so +	 exp(x) - 1  =  2^k (qx + 1) - 1  =  2^k qx + 2^k - 1.  */ +	px = ldexpl(1.0L, k); +	x = px * qx + (px - 1.0); +	return x; +} +#endif  | 
