diff options
Diffstat (limited to 'src/math/e_exp.c')
| -rw-r--r-- | src/math/e_exp.c | 155 | 
1 files changed, 155 insertions, 0 deletions
| diff --git a/src/math/e_exp.c b/src/math/e_exp.c new file mode 100644 index 00000000..66107b95 --- /dev/null +++ b/src/math/e_exp.c @@ -0,0 +1,155 @@ + +/* @(#)e_exp.c 1.6 04/04/22 */ +/* + * ==================================================== + * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. + * + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice  + * is preserved. + * ==================================================== + */ + +/* exp(x) + * Returns the exponential of x. + * + * Method + *   1. Argument reduction: + *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. + *      Given x, find r and integer k such that + * + *               x = k*ln2 + r,  |r| <= 0.5*ln2.   + * + *      Here r will be represented as r = hi-lo for better  + *      accuracy. + * + *   2. Approximation of exp(r) by a special rational function on + *      the interval [0,0.34658]: + *      Write + *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... + *      We use a special Remes algorithm on [0,0.34658] to generate  + *      a polynomial of degree 5 to approximate R. The maximum error  + *      of this polynomial approximation is bounded by 2**-59. In + *      other words, + *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 + *      (where z=r*r, and the values of P1 to P5 are listed below) + *      and + *          |                  5          |     -59 + *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2  + *          |                             | + *      The computation of exp(r) thus becomes + *                             2*r + *              exp(r) = 1 + ------- + *                            R - r + *                                 r*R1(r)       + *                     = 1 + r + ----------- (for better accuracy) + *                                2 - R1(r) + *      where + *                               2       4             10 + *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ). + *       + *   3. Scale back to obtain exp(x): + *      From step 1, we have + *         exp(x) = 2^k * exp(r) + * + * Special cases: + *      exp(INF) is INF, exp(NaN) is NaN; + *      exp(-INF) is 0, and + *      for finite argument, only exp(0)=1 is exact. + * + * Accuracy: + *      according to an error analysis, the error is always less than + *      1 ulp (unit in the last place). + * + * Misc. info. + *      For IEEE double  + *          if x >  7.09782712893383973096e+02 then exp(x) overflow + *          if x < -7.45133219101941108420e+02 then exp(x) underflow + * + * Constants: + * The hexadecimal values are the intended ones for the following  + * constants. The decimal values may be used, provided that the  + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include <math.h> +#include "math_private.h" + +static const double +one     = 1.0, +halF[2] = {0.5,-0.5,}, +huge    = 1.0e+300, +twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/ +o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */ +u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */ +ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */ +             -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ +ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */ +             -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */ +invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ +P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ +P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ +P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ +P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ +P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ + + +double +exp(double x) /* default IEEE double exp */ +{ +        double y,hi=0.0,lo=0.0,c,t; +        int32_t k=0,xsb; +        uint32_t hx; + +        GET_HIGH_WORD(hx,x); +        xsb = (hx>>31)&1;               /* sign bit of x */ +        hx &= 0x7fffffff;               /* high word of |x| */ + +    /* filter out non-finite argument */ +        if(hx >= 0x40862E42) {                  /* if |x|>=709.78... */ +            if(hx>=0x7ff00000) { +                uint32_t lx; +                GET_LOW_WORD(lx,x); +                if(((hx&0xfffff)|lx)!=0) +                     return x+x;                /* NaN */ +                else return (xsb==0)? x:0.0;    /* exp(+-inf)={inf,0} */ +            } +            if(x > o_threshold) return huge*huge; /* overflow */ +            if(x < u_threshold) return twom1000*twom1000; /* underflow */ +        } + +    /* argument reduction */ +        if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */  +            if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */ +                hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; +            } else { +                k  = (int)(invln2*x+halF[xsb]); +                t  = k; +                hi = x - t*ln2HI[0];    /* t*ln2HI is exact here */ +                lo = t*ln2LO[0]; +            } +            x  = hi - lo; +        }  +        else if(hx < 0x3e300000)  {     /* when |x|<2**-28 */ +            if(huge+x>one) return one+x;/* trigger inexact */ +        } +        else k = 0; + +    /* x is now in primary range */ +        t  = x*x; +        c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); +        if(k==0)        return one-((x*c)/(c-2.0)-x);  +        else            y = one-((lo-(x*c)/(2.0-c))-hi); +        if(k >= -1021) { +            uint32_t hy; +            GET_HIGH_WORD(hy,y); +            SET_HIGH_WORD(y,hy+(k<<20));        /* add k to y's exponent */ +            return y; +        } else { +            uint32_t hy; +            GET_HIGH_WORD(hy,y); +            SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */ +            return y*twom1000; +        } +} | 
