summaryrefslogtreecommitdiff
path: root/src/math/expm1.c
blob: a7eb2c0bd51a3006fe7ee588bd8a3fbb12bed216 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/* origin: FreeBSD /usr/src/lib/msun/src/s_expm1.c */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */
/* expm1(x)
 * Returns exp(x)-1, the exponential of x minus 1.
 *
 * Method
 *   1. Argument reduction:
 *      Given x, find r and integer k such that
 *
 *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
 *
 *      Here a correction term c will be computed to compensate
 *      the error in r when rounded to a floating-point number.
 *
 *   2. Approximating expm1(r) by a special rational function on
 *      the interval [0,0.34658]:
 *      Since
 *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
 *      we define R1(r*r) by
 *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
 *      That is,
 *          R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
 *                   = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
 *                   = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
 *      We use a special Remez algorithm on [0,0.347] to generate
 *      a polynomial of degree 5 in r*r to approximate R1. The
 *      maximum error of this polynomial approximation is bounded
 *      by 2**-61. In other words,
 *          R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
 *      where   Q1  =  -1.6666666666666567384E-2,
 *              Q2  =   3.9682539681370365873E-4,
 *              Q3  =  -9.9206344733435987357E-6,
 *              Q4  =   2.5051361420808517002E-7,
 *              Q5  =  -6.2843505682382617102E-9;
 *              z   =  r*r,
 *      with error bounded by
 *          |                  5           |     -61
 *          | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
 *          |                              |
 *
 *      expm1(r) = exp(r)-1 is then computed by the following
 *      specific way which minimize the accumulation rounding error:
 *                             2     3
 *                            r     r    [ 3 - (R1 + R1*r/2)  ]
 *            expm1(r) = r + --- + --- * [--------------------]
 *                            2     2    [ 6 - r*(3 - R1*r/2) ]
 *
 *      To compensate the error in the argument reduction, we use
 *              expm1(r+c) = expm1(r) + c + expm1(r)*c
 *                         ~ expm1(r) + c + r*c
 *      Thus c+r*c will be added in as the correction terms for
 *      expm1(r+c). Now rearrange the term to avoid optimization
 *      screw up:
 *                      (      2                                    2 )
 *                      ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
 *       expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
 *                      ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
 *                      (                                             )
 *
 *                 = r - E
 *   3. Scale back to obtain expm1(x):
 *      From step 1, we have
 *         expm1(x) = either 2^k*[expm1(r)+1] - 1
 *                  = or     2^k*[expm1(r) + (1-2^-k)]
 *   4. Implementation notes:
 *      (A). To save one multiplication, we scale the coefficient Qi
 *           to Qi*2^i, and replace z by (x^2)/2.
 *      (B). To achieve maximum accuracy, we compute expm1(x) by
 *        (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
 *        (ii)  if k=0, return r-E
 *        (iii) if k=-1, return 0.5*(r-E)-0.5
 *        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
 *                     else          return  1.0+2.0*(r-E);
 *        (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
 *        (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
 *        (vii) return 2^k(1-((E+2^-k)-r))
 *
 * Special cases:
 *      expm1(INF) is INF, expm1(NaN) is NaN;
 *      expm1(-INF) is -1, and
 *      for finite argument, only expm1(0)=0 is exact.
 *
 * Accuracy:
 *      according to an error analysis, the error is always less than
 *      1 ulp (unit in the last place).
 *
 * Misc. info.
 *      For IEEE double
 *          if x >  7.09782712893383973096e+02 then expm1(x) overflow
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following
 * constants. The decimal values may be used, provided that the
 * compiler will convert from decimal to binary accurately enough
 * to produce the hexadecimal values shown.
 */

#include "libm.h"

static const double
o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
ln2_hi      = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
ln2_lo      = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
invln2      = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
/* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
Q2 =  1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
Q4 =  4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */

double expm1(double x)
{
	double_t y,hi,lo,c,t,e,hxs,hfx,r1,twopk;
	union {double f; uint64_t i;} u = {x};
	uint32_t hx = u.i>>32 & 0x7fffffff;
	int k, sign = u.i>>63;

	/* filter out huge and non-finite argument */
	if (hx >= 0x4043687A) {  /* if |x|>=56*ln2 */
		if (isnan(x))
			return x;
		if (sign)
			return -1;
		if (x > o_threshold) {
			x *= 0x1p1023;
			return x;
		}
	}

	/* argument reduction */
	if (hx > 0x3fd62e42) {  /* if  |x| > 0.5 ln2 */
		if (hx < 0x3FF0A2B2) {  /* and |x| < 1.5 ln2 */
			if (!sign) {
				hi = x - ln2_hi;
				lo = ln2_lo;
				k =  1;
			} else {
				hi = x + ln2_hi;
				lo = -ln2_lo;
				k = -1;
			}
		} else {
			k  = invln2*x + (sign ? -0.5 : 0.5);
			t  = k;
			hi = x - t*ln2_hi;  /* t*ln2_hi is exact here */
			lo = t*ln2_lo;
		}
		STRICT_ASSIGN(double, x, hi - lo);
		c = (hi-x)-lo;
	} else if (hx < 0x3c900000) {  /* |x| < 2**-54, return x */
		if (hx < 0x00100000)
			FORCE_EVAL((float)x);
		return x;
	} else
		k = 0;

	/* x is now in primary range */
	hfx = 0.5*x;
	hxs = x*hfx;
	r1 = 1.0+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
	t  = 3.0-r1*hfx;
	e  = hxs*((r1-t)/(6.0 - x*t));
	if (k == 0)   /* c is 0 */
		return x - (x*e-hxs);
	e  = x*(e-c) - c;
	e -= hxs;
	/* exp(x) ~ 2^k (x_reduced - e + 1) */
	if (k == -1)
		return 0.5*(x-e) - 0.5;
	if (k == 1) {
		if (x < -0.25)
			return -2.0*(e-(x+0.5));
		return 1.0+2.0*(x-e);
	}
	u.i = (uint64_t)(0x3ff + k)<<52;  /* 2^k */
	twopk = u.f;
	if (k < 0 || k > 56) {  /* suffice to return exp(x)-1 */
		y = x - e + 1.0;
		if (k == 1024)
			y = y*2.0*0x1p1023;
		else
			y = y*twopk;
		return y - 1.0;
	}
	u.i = (uint64_t)(0x3ff - k)<<52;  /* 2^-k */
	if (k < 20)
		y = (x-e+(1-u.f))*twopk;
	else
		y = (x-(e+u.f)+1)*twopk;
	return y;
}