Age | Commit message (Collapse) | Author | Lines |
|
this avoids some spurious negation and duplicated errno logic, and
brings the code in line with the newly-added multithreaded setgroups.
|
|
this function is outside the scope of the standards, but logically
should behave like the set*id functions whose effects are
process-global.
|
|
resource limits have been process-wide since linux 2.6.10, and the
prlimit syscall was added in 2.6.36, so prlimit can be assumed to set
the resource limits correctly for the whole process.
|
|
commit bd153422f28634bb6e53f13f80beb8289d405267 reintroduced the bug
fixed in c21051e90cd27a0b26be0ac66950b7396a156ba1 by refactoring the
__syscall_ret into _Fork where it once again runs before the atfork
handlers are called. since _Fork is a public interface that sets
errno, this can't be fixed the way it was fixed last time without
making new internal interfaces. instead, just save errno, and restore
it only on error to ensure that a value of 0 is never restored.
|
|
pthread_cond_wait arranged for requeued waiters to wake when the mutex
is unlocked by temporarily adjusting the mutex's waiter count. commit
54ca677983d47529bab8752315ac1a2b49888870 broke this when introducing
PI mutexes by repurposing the waiter count field of the mutex
structure. since then, for PI mutexes, the waiter count adjustment was
misinterpreted by the mutex locking code as indicating that the mutex
is non a non-recoverable state.
it would be possible to special-case PI mutexes here, but instead just
drop all adjustment of the waiters count, and instead use the lock
word waiters bit for all mutex types. since the mutex is either held
by the caller or in unrecoverable state at the time the bit is set, it
will necessarily still be set at the time of any subsequent valid
unlock operation, and this will produce the desired effect of waking
the next waiter.
if waiter counts are entirely dropped at some point in the future this
code should still work without modification.
|
|
commit 25ea9f712c30c32957de493d4711ee39d0bbb024 introduced a deadlock
to the posix_spawn child whereby, if abort was called in the parent
and ended up taking the abort lock to terminate the process, the
__libc_sigaction calls in the child would wait forever to obtain a
lock that would not be released. this could be fixed by having abort
set the abort lock as the exit futex address, but it's cleaner to just
remove the SIGABRT special handling from the internal __libc_sigaction
and lift it to the public sigaction function.
nothing but the posix_spawn child calls __libc_sigaction on SIGABRT,
and since commit b7bc966522d73e1dc420b5ee6fc7a2e78099a08c the abort
lock is held at the time of __clone, which precludes the child
inheriting a kernel-level signal disposition inconsistent with the
disposition on the abstract machine. this means it's fine to inspect
and modify the disposition in the child without a lock.
|
|
Merge changes from Solar Designer's crypt_blowfish v1.3. This makes
crypt_blowfish fully compatible with OpenBSD's bcrypt by adding
support for the $2b$ prefix (which behaves the same as
crypt_blowfish's $2y$).
|
|
|
|
also fix the lack of declaration (and thus hidden visibility) in
__stdio_close's use of __aio_close.
|
|
commit 3990c5c6a40440cdb14746ac080d0ecf8d5d6733 removed the last
reference.
|
|
this makes the code slightly smaller and eliminates timer_create from
relevance to possible future changes to multithreaded fork.
the barrier of a_store isn't technically needed here, but a_store is
used anyway for internal consistency of the memory model.
|
|
this was leftover from when the actual SIGEV_THREAD timer logic was in
the signal handler. commit 5b74eed3b301e2227385f3bf26d3bb7c2d822cf8
replaced that with use of sigwaitinfo, with the actual signal left
blocked, so the no-op signal handler was no longer serving any
purpose.
the signal disposition reset to SIG_DFL is still needed, however, in
case we inherited SIG_IGN from a foreign-libc process.
|
|
assert is not specified to flush open stdio streams, and doing so can
block indefinitely waiting for a lock already held or an output
operation to a file that can't accept more output until an
unsatisfiable condition is met.
|
|
commit 500c6886c654fd45e4926990fee2c61d816be197 broke this by fixing
the behavior of fread to conform to the C standard; getgroupslist was
assuming the old behavior, that a request to read 1 member of length 0
would return 1, not 0.
|
|
this change prevents the child created concurrently with abort from
seeing the SIGABRT disposition change from SIG_IGN to SIG_DFL (other
changes are not visible anyway) and prevents leaking the write end of
the child pipe to children created by fork in another thread, which
may block return of posix_spawn indefinitely if the forked child does
not exit or exec.
along with other changes, this suggests that __abort_lock should
perhaps eventually be renamed to reflect that it's becoming a broader
lock on related "process lifetime" state.
|
|
the existing abort locking logic in sigaction only accounted for
attempts to change the disposition, not attempts to observe the change
made by abort.
unfortunately the change is still observable in at least one other
place: inheritance of signal dispositions across exec and posix_spawn.
fixing these is a separate task and it's not even clear whether a
complete fix is possible.
|
|
the _Fork interface is defined for future issue of POSIX as the
outcome of Austin Group issue 62, which drops the AS-safety
requirement for fork, and provides an AS-safe replacement that does
not run the registered atfork handlers.
|
|
this is in preparation for implementing _Fork from POSIX-future,
factored as a separate commit to improve readability of history.
|
|
this makes the code slightly smaller and eliminates these functions
from relevance to possible future changes to multithreaded fork.
the barrier of a_store isn't technically needed here, but a_store is
used anyway for internal consistency of the memory model.
|
|
if the multithreaded parent forked while another thread was calling
sigaction for SIGABRT or calling abort, the child could inherit a lock
state in which future calls to abort will deadlock, or in which the
disposition for SIGABRT has already been reset to SIG_DFL. this is
nonconforming since abort is AS-safe and permitted to be called
concurrently with fork or in the MT-forked child.
|
|
the dummy definition of __abort_lock in sigaction.c was performing
exactly the same role that putting the lock in its own source file
could and should have been used to achieve.
while we're moving it, give it a proper declaration.
|
|
previously, if a file descriptor had aio operations pending in the
parent before fork, attempting to close it in the child would attempt
to cancel a thread belonging to the parent. this could deadlock, fail,
or crash the whole process of the cancellation signal handler was not
yet installed in the parent. in addition, further use of aio from the
child could malfunction or deadlock.
POSIX specifies that async io operations are not inherited by the
child on fork, so clear the entire aio fd map in the child, and take
the aio map lock (with signals blocked) across the fork so that the
lock is kept in a consistent state.
|
|
taking the deprecated/dropped vfork spec strictly, doing pretty much
anything but execve in the child is wrong and undefined. however,
these are commonly needed operations to setup the child state before
exec, and historical implementations tolerated them.
for single-threaded parents, these operations already worked as
expected in the vforked child. however, due to the need for __synccall
to synchronize id/resource limit changes among all threads, calling
these functions in the vforked child of a multithreaded parent caused
a misdirected broadcast signaling of all threads in the parent. these
signals could kill the parent entirely if the synccall signal handler
had never been installed in the parent, or could be ignored if it had,
or could signal/kill one or more utterly wrong processes if the parent
already terminated (due to vfork semantics, only possible via fatal
signal) and the parent tids were recycled. in any case, the expected
number of semaphore posts would never happen, so the child would
permanently hang (with all signals blocked) waiting for them.
to mitigate this, and also make the normal usage case work as
intended, treat the condition where the caller's actual tid does not
match the tid in its thread structure as single-threaded, and bypass
the entire synccall broadcast operation.
|
|
commit 0a05eace163cee9b08571d2ff9d90f5e82d9c228 implemented AT_EACCESS
for faccessat with a horrible hack, creating a child process to change
switch uid/gid and perform the access probe without making potentially
irreversible changes to the caller's credentials. this was due to the
syscall lacking a flags argument.
linux 5.8 introduced a new syscall, SYS_faccessat2, fixing this
deficiency. use it if any flags are passed, and fallback to the old
strategy on ENOSYS. continue using the old syscall when there are no
flags.
|
|
|
|
this code is only needed for pre-2.6 kernels, which are not actually
supported anyway, and was never tested. the fallback path using
SYS_modify_ldt failed to clear the upper bits of %eax (all ones due to
SYS_set_thread_area's return value being an error) before modifying
%al to attempt a new syscall.
|
|
prior to commit e68c51ac46a9f273927aef8dcebc89912ab19ece, h_errno was
actually an external data object not a macro. bring back the symbol,
and use it as the storage for the main thread's h_errno.
technically this still doesn't provide full compatibility if the
application was multithreaded, but at the time there were no res_*
functions (and they did not set h_errno anyway), so any use of h_errno
would have been via thread-unsafe functions. thus a solution that just
fixes single-threaded applications seems acceptable.
|
|
now that struct winsize is available via sys/ioctl.h once again,
including termios.h is not needed.
|
|
dtv_copy, canary2, and canary_at_end existed solely to match multiple
ABI and asm-accessed layouts simultaneously. now that pthread_arch.h
can be included before struct __pthread is defined, the struct layout
can depend on macros defined by pthread_arch.h.
|
|
the adjustment made is entirely a function of TLS_ABOVE_TP and
TP_OFFSET. aside from avoiding repetition of the TP_OFFSET value and
arithmetic, this change makes pthread_arch.h independent of the
definition of struct __pthread from pthread_impl.h. this in turn will
allow inclusion of pthread_arch.h to be moved to the top of
pthread_impl.h so that it can influence the definition of the
structure.
previously, arch files were very inconsistent about the type used for
the thread pointer. this change unifies the new __get_tp interface to
always use uintptr_t, which is the most correct when performing
arithmetic that may involve addresses outside the actual pointed-to
object (due to TP_OFFSET).
|
|
the only part of TP_ADJ that was not uniquely determined by
TLS_ABOVE_TP was the 0x7000 adjustment used mainly on mips and powerpc
variants.
|
|
while it's not clearly documented anywhere, this is the historical
behavior which some applications expect. applications which need to
see the response packet in these cases, for example to distinguish
between nonexistence in a secure vs insecure zone, must already use
res_mkquery with res_send in order to be portable, since most if not
all other implementations of res_query don't provide it.
|
|
the framework to do this always existed but it was deemed unnecessary
because the only [ex-]standard functions using h_errno were not
thread-safe anyway. however, some of the nonstandard res_* functions
are also supposed to set h_errno to indicate the cause of error, and
were unable to do so because it was not thread-safe. this change is a
prerequisite for fixing them.
|
|
these have been adopted for future issue of POSIX as the outcome of
Austin Group issue 1151, and are simply functions performing the roles
of the historical ioctls. since struct winsize is being standardized
along with them, its definition is moved to the appropriate header.
there is some chance this will break source files that expect struct
winsize to be defined by sys/ioctl.h without including termios.h. if
this happens, further changes will be needed to have sys/ioctl.h
expose it too.
|
|
all path elements but the last had the final byte truncated.
|
|
this is a prerequisite for addition of other interfaces that use
kernel tids, including futex and SIGEV_THREAD_ID.
there is some ambiguity as to whether the semantic return type should
be int or pid_t. either way, futex API imposes a contract that the
values fit in int (excluding some upper reserved bits). glibc used
pid_t, so in the interest of not having gratuitous mismatch (the
underlying types are the same anyway), pid_t is used here as well.
while conceptually this is a syscall, the copy stored in the thread
structure is always valid in all contexts where it's valid to call
libc functions, so it's used to avoid the syscall.
|
|
longjmp should set the return value of setjmp, but 64bit
registers were used for the 0 check while the type is int.
use the code that gcc generates for return val ? val : 1;
|
|
Use a branchless sequence that is one byte shorter on 64-bit, same size
on 32-bit. Thanks to Pete Cawley for suggesting this variant.
|
|
|
|
|
|
longjmp 'val' argument is an int, but the assembly is referencing 64-bit
registers as if the argument was a long, or the caller was responsible
for extending the argument. Though the psABI is not clear on this, the
interpretation in GCC is that high bits may be arbitrary and the callee
is responsible for sign/zero-extending the value as needed (likewise for
return values: callers must anticipate that high bits may be garbage).
Therefore testing %rax is a functional bug: setjmp would wrongly return
zero if longjmp was called with val==0, but high bits of %rsi happened
to be non-zero.
Rewrite the prologue to refer to 32-bit registers. In passing, change
'test' to use %rsi, as there's no advantage to using %rax and the new
form is cheaper on processors that do not perform move elimination.
|
|
a number of users performing seccomp filtering have requested use of
the new individual syscall numbers for socket syscalls, rather than
the legacy multiplexed socketcall, since the latter has the arguments
all in memory where they can't participate in filter decisions.
previously, some archs used the multiplexed socketcall if it was
historically all that was available, while other archs used the
separate syscalls. the intent was that the latter set only include
archs that have "always" had separate socket syscalls, at least going
back to linux 2.6.0. however, at least powerpc, powerpc64, and sh were
wrongly included in this set, and thus socket operations completely
failed on old kernels for these archs.
with the changes made here, the separate syscalls are always
preferred, but fallback code is compiled for archs that also define
SYS_socketcall. two such archs, mips (plain o32) and microblaze,
define SYS_socketcall despite never having needed it, so it's now
undefined by their versions of syscall_arch.h to prevent inclusion of
useless fallback code.
some archs, where the separate syscalls were only added after the
addition of SYS_accept4, lack SYS_accept. because socket calls are
always made with zeros in the unused argument positions, it suffices
to just use SYS_accept4 to provide a definition of SYS_accept, and
this is done to make happy the macro machinery that concatenates the
socket call name onto __SC_ and SYS_.
|
|
same approach as in sqrt.
sqrtl was broken on aarch64, riscv64 and s390x targets because
of missing quad precision support and on m68k-sf because of
missing ld80 sqrtl.
this implementation is written for quad precision and then
edited to make it work for both m68k and x86 style ld80 formats
too, but it is not expected to be optimal for them.
note: using fp instructions for the initial estimate when such
instructions are available (e.g. double prec sqrt or rsqrt) is
avoided because of fenv correctness.
|
|
for targets where long double is different from double.
|
|
same method as in sqrt, this was tested on all inputs against
an sqrtf instruction. (the only difference found was that x86
sqrtf does not signal the x86 specific input-denormal exception
on negative subnormal inputs while the software sqrtf does,
this is fine as it was designed for ieee754 exceptions only.)
there is known faster method:
"Computing Floating-Point Square Roots via Bivariate Polynomial Evaluation"
that computes sqrtf directly via pipelined polynomial evaluation
which allows more parallelism, but the design does not generalize
easily to higher precisions.
|
|
approximate 1/sqrt(x) and sqrt(x) with goldschmidt iterations.
this is known to be a fast method for computing sqrt, but it is
tricky to get right, so added detailed comments.
use a lookup table for the initial estimate, this adds 256bytes
rodata but it can be shared between sqrt, sqrtf and sqrtl.
this saves one iteration compared to a linear estimate.
this is for soft float targets, but it supports fenv by using a
floating-point operation to get the final result. the result
is correctly rounded in all rounding modes. if fenv support is
turned off then the nearest rounded result is computed and
inexact exception is not signaled.
assumes fast 32bit integer arithmetics and 32 to 64bit mul.
|
|
prior to this change, the canonical name came from the first hosts
file line matching the requested family, so the canonical name for a
given hostname could differ depending on whether it was requested with
AF_UNSPEC or a particular family (AF_INET or AF_INET6). now, the
canonical name is deterministically the first one to appear with the
requested name as an alias.
|
|
the existing code clobbered the canonical name already discovered
every time another matching line was found, which will necessarily be
the case when a hostname has both IPv4 and v6 definitions.
patch by Wolf.
|
|
this is actually a functional fix at present, since the C sqrtl does
not support ld80 and just wraps double sqrt. once that's fixed it will
just be an optimization.
|
|
if len==0, an uninitalized variable would be returned
|