summaryrefslogtreecommitdiff
path: root/src/thread/pthread_mutex_consistent.c
AgeCommit message (Collapse)AuthorLines
2019-02-12redesign robust mutex states to eliminate data races on type fieldRich Felker-3/+7
in order to implement ENOTRECOVERABLE, the implementation has traditionally used a bit of the mutex type field to indicate that it's recovered after EOWNERDEAD and will go into ENOTRECOVERABLE state if pthread_mutex_consistent is not called before unlocking. while it's only the thread that holds the lock that needs access to this information (except possibly for the sake of pthread_mutex_consistent choosing between EINVAL and EPERM for erroneous calls), the change to the type field is formally a data race with all other threads that perform any operation on the mutex. no individual bits race, and no write races are possible, so things are "okay" in some sense, but it's still not good. this patch moves the recovery/consistency state to the mutex owner/lock field which is rightfully mutable. bit 30, the same bit the kernel uses with a zero owner to indicate that the previous owner died holding the lock, is now used with a nonzero owner to indicate that the mutex is held but has not yet been marked consistent. note that the kernel ABI also reserves bit 29 not to appear in any tid, so the sentinel value we use for ENOTRECOVERABLE, 0x7fffffff, does not clash with any tid plus bit 30.
2014-08-16fix robust mutex unrecoverable status, and related clean-upRich Felker-1/+1
a robust mutex should not enter the unrecoverable status until it's unlocked without marking it consistent. previously, flag 8 in the type was used as an indication of unrecoverable, but only honored after successful locking; this resulted in a race window where the unrecoverable mutex could appear to a second thread as locked/busy again while the first thread was in the process of observing it as unrecoverable. now, flag 8 is used to mean that the mutex is in the process of being recovered, but not yet marked consistent. the flag only takes effect in pthread_mutex_unlock, where it causes the value 0x40000000 (owner dead flag, with old owner tid 0, an otherwise impossible state) to be stored in the lock. subsequent lock attempts will interpret this state as unrecoverable.
2014-08-16fix false ownership of mutexes due to tid reuse, using robust listRich Felker-2/+2
per the resolution of Austin Group issue 755, the POSIX requirement that ownership be enforced for recursive and error-checking mutexes does not allow a random new thread to acquire ownership of an orphaned mutex just because it happened to be assigned the same tid as the original owner that exited with the mutex locked. one possible fix for this issue would be to disallow the kernel thread to terminate when it exited with mutexes held, permanently reserving the tid against reuse. however, this does not solve the problem for process-shared mutexes where lifetime cannot be controlled, so it was not used. the alternate approach I've taken is to reuse the robust mutex system for non-robust recursive and error-checking mutexes. when a thread exits, the kernel (or the new userspace robust-list code added in commit b092f1c5fa9c048e12d002c7b972df5ecbe96d1d) will set the owner-died bit for these orphaned mutexes, but since the mutex-type is not robust, pthread_mutex_trylock will not allow a new owner to acquire them. instead, they remain in a state of being permanently locked, as desired.
2014-08-15make futex operations use private-futex mode when possibleRich Felker-1/+1
private-futex uses the virtual address of the futex int directly as the hash key rather than requiring the kernel to resolve the address to an underlying backing for the mapping in which it lies. for certain usage patterns it improves performance significantly. in many places, the code using futex __wake and __wait operations was already passing a correct fixed zero or nonzero flag for the priv argument, so no change was needed at the site of the call, only in the __wake and __wait functions themselves. in other places, especially where the process-shared attribute for a synchronization object was not previously tracked, additional new code is needed. for mutexes, the only place to store the flag is in the type field, so additional bit masking logic is needed for accessing the type. for non-process-shared condition variable broadcasts, the futex requeue operation is unable to requeue from a private futex to a process-shared one in the mutex structure, so requeue is simply disabled in this case by waking all waiters. for robust mutexes, the kernel always performs a non-private wake when the owner dies. in order not to introduce a behavioral regression in non-process-shared robust mutexes (when the owning thread dies), they are simply forced to be treated as process-shared for now, giving correct behavior at the expense of performance. this can be fixed by adding explicit code to pthread_exit to do the right thing for non-shared robust mutexes in userspace rather than relying on the kernel to do it, and will be fixed in this way later. since not all supported kernels have private futex support, the new code detects EINVAL from the futex syscall and falls back to making the call without the private flag. no attempt to cache the result is made; caching it and using the cached value efficiently is somewhat difficult, and not worth the complexity when the benefits would be seen only on ancient kernels which have numerous other limitations and bugs anyway.
2014-06-10replace all remaining internal uses of pthread_self with __pthread_selfRich Felker-1/+1
prior to version 1.1.0, the difference between pthread_self (the public function) and __pthread_self (the internal macro or inline function) was that the former would lazily initialize the thread pointer if it was not already initialized, whereas the latter would crash in this case. since lazy initialization is no longer supported, use of pthread_self no longer makes sense; it simply generates larger, slower code.
2011-03-17implement robust mutexesRich Felker-0/+10
some of this code should be cleaned up, e.g. using macros for some of the bit flags, masks, etc. nonetheless, the code is believed to be working and correct at this point.