Age  Commit message (Collapse)  Author  Lines 

The old code used the rounding idiom incorrectly:
y = (double)(x + 0x1p52)  0x1p52;
the cast is useless if FLT_EVAL_METHOD==0 and causes a second rounding
if FLT_EVAL_METHOD==2 which can give incorrect result in nearest rounding
mode, so the correct idiom is to add/sub a powerof2 according to the
characteristics of double_t.
This did not cause actual bug because only i386 is affected where rint
is implemented in asm.
Other rounding functions use a similar idiom, but they give correct
results because they only rely on getting a neighboring integer result
and the rounding direction is fixed up separately independently of the
current rounding mode. However they should be fixed to use the idiom
correctly too.


* faster, smaller, cleaner implementation than the bit hacks of fdlibm
* use arithmetics like y=(double)(x+0x1p52)0x1p52, which is an integer
neighbor of x in all rounding modes (0<=x<0x1p52) and only use bithacks
when that's faster and smaller (for float it usually is)
* the code assumes standard excess precision handling for casts
* long double code supports both ld80 and ld128
* nearbyint is not changed (it is a wrapper around rint)


thanks to the hard work of Szabolcs Nagy (nsz), identifying the best
(from correctness and license standpoint) implementations from freebsd
and openbsd and cleaning them up! musl should now fully support c99
float and long double math functions, and has nearcomplete complex
math support. tgmath should also work (fully on gcccompatible
compilers, and mostly on any c99 compiler).
based largely on commit 0376d44a890fea261506f1fc63833e7a686dca19 from
nsz's libm git repo, with some additions (dummy versions of a few
missing long double complex functions, etc.) by me.
various cleanups still need to be made, including readding (if
they're correct) some asm functions that were dropped.
