diff options
Diffstat (limited to 'src')
| -rw-r--r-- | src/math/tgamma.c | 223 | ||||
| -rw-r--r-- | src/math/tgammaf.c | 12 | 
2 files changed, 215 insertions, 20 deletions
| diff --git a/src/math/tgamma.c b/src/math/tgamma.c index f3bbe370..a3f203c1 100644 --- a/src/math/tgamma.c +++ b/src/math/tgamma.c @@ -1,16 +1,221 @@ -#include <math.h> +/* +"A Precision Approximation of the Gamma Function" - Cornelius Lanczos (1964) +"Lanczos Implementation of the Gamma Function" - Paul Godfrey (2001) +"An Analysis of the Lanczos Gamma Approximation" - Glendon Ralph Pugh (2004) -// FIXME: use lanczos approximation +approximation method: -double __lgamma_r(double, int *); +                        (x - 0.5)         S(x) +Gamma(x) = (x + g - 0.5)         *  ---------------- +                                    exp(x + g - 0.5) + +with +                 a1      a2      a3            aN +S(x) ~= [ a0 + ----- + ----- + ----- + ... + ----- ] +               x + 1   x + 2   x + 3         x + N + +with a0, a1, a2, a3,.. aN constants which depend on g. + +for x < 0 the following reflection formula is used: + +Gamma(x)*Gamma(-x) = -pi/(x sin(pi x)) + +most ideas and constants are from boost and python +*/ +#include "libm.h" + +static const double pi = 3.141592653589793238462643383279502884; + +/* sin(pi x) with x > 0 && isnormal(x) assumption */ +static double sinpi(double x) +{ +	int n; + +	/* argument reduction: x = |x| mod 2 */ +	/* spurious inexact when x is odd int */ +	x = x * 0.5; +	x = 2 * (x - floor(x)); + +	/* reduce x into [-.25,.25] */ +	n = 4 * x; +	n = (n+1)/2; +	x -= n * 0.5; + +	x *= pi; +	switch (n) { +	default: /* case 4 */ +	case 0: +		return __sin(x, 0, 0); +	case 1: +		return __cos(x, 0); +	case 2: +		/* sin(0-x) and -sin(x) have different sign at 0 */ +		return __sin(0-x, 0, 0); +	case 3: +		return -__cos(x, 0); +	} +} + +#define N 12 +//static const double g = 6.024680040776729583740234375; +static const double gmhalf = 5.524680040776729583740234375; +static const double Snum[N+1] = { +	23531376880.410759688572007674451636754734846804940, +	42919803642.649098768957899047001988850926355848959, +	35711959237.355668049440185451547166705960488635843, +	17921034426.037209699919755754458931112671403265390, +	6039542586.3520280050642916443072979210699388420708, +	1439720407.3117216736632230727949123939715485786772, +	248874557.86205415651146038641322942321632125127801, +	31426415.585400194380614231628318205362874684987640, +	2876370.6289353724412254090516208496135991145378768, +	186056.26539522349504029498971604569928220784236328, +	8071.6720023658162106380029022722506138218516325024, +	210.82427775157934587250973392071336271166969580291, +	2.5066282746310002701649081771338373386264310793408, +}; +static const double Sden[N+1] = { +	0, 39916800, 120543840, 150917976, 105258076, 45995730, 13339535, +	2637558, 357423, 32670, 1925, 66, 1, +}; +/* n! for small integer n */ +static const double fact[] = { +	1, 1, 2, 6, 24, 120, 720, 5040.0, 40320.0, 362880.0, 3628800.0, 39916800.0, +	479001600.0, 6227020800.0, 87178291200.0, 1307674368000.0, 20922789888000.0, +	355687428096000.0, 6402373705728000.0, 121645100408832000.0, +	2432902008176640000.0, 51090942171709440000.0, 1124000727777607680000.0, +}; + +/* S(x) rational function for positive x */ +static double S(double x) +{ +	double num = 0, den = 0; +	int i; + +	/* to avoid overflow handle large x differently */ +	if (x < 8) +		for (i = N; i >= 0; i--) { +			num = num * x + Snum[i]; +			den = den * x + Sden[i]; +		} +	else +		for (i = 0; i <= N; i++) { +			num = num / x + Snum[i]; +			den = den / x + Sden[i]; +		} +	return num/den; +}  double tgamma(double x)  { -	int sign; -	double y; +	double absx, y, dy, z, r; -	y = exp(__lgamma_r(x, &sign)); -	if (sign < 0) -		y = -y; -	return y; +	/* special cases */ +	if (!isfinite(x)) +		/* tgamma(nan)=nan, tgamma(inf)=inf, tgamma(-inf)=nan with invalid */ +		return x + INFINITY; + +	/* integer arguments */ +	/* raise inexact when non-integer */ +	if (x == floor(x)) { +		if (x == 0) +			/* tgamma(+-0)=+-inf with divide-by-zero */ +			return 1/x; +		if (x < 0) +			return 0/0.0; +		if (x <= sizeof fact/sizeof *fact) +			return fact[(int)x - 1]; +	} + +	absx = fabs(x); + +	/* x ~ 0: tgamma(x) ~ 1/x */ +	if (absx < 0x1p-54) +		return 1/x; + +	/* x >= 172: tgamma(x)=inf with overflow */ +	/* x =< -184: tgamma(x)=+-0 with underflow */ +	if (absx >= 184) { +		if (x < 0) { +			if (floor(x) * 0.5 == floor(x * 0.5)) +				return 0; +			return -0.0; +		} +		x *= 0x1p1023; +		return x; +	} + +	/* handle the error of x + g - 0.5 */ +	y = absx + gmhalf; +	if (absx > gmhalf) { +		dy = y - absx; +		dy -= gmhalf; +	} else { +		dy = y - gmhalf; +		dy -= absx; +	} + +	z = absx - 0.5; +	r = S(absx) * exp(-y); +	if (x < 0) { +		/* reflection formula for negative x */ +		r = -pi / (sinpi(absx) * absx * r); +		dy = -dy; +		z = -z; +	} +	r += dy * (gmhalf+0.5) * r / y; +	z = pow(y, 0.5*z); +	r = r * z * z; +	return r;  } + +#if 0 +double __lgamma_r(double x, int *sign) +{ +	double r, absx, z, zz, w; + +	*sign = 1; + +	/* special cases */ +	if (!isfinite(x)) +		/* lgamma(nan)=nan, lgamma(+-inf)=inf */ +		return x*x; + +	/* integer arguments */ +	if (x == floor(x) && x <= 2) { +		/* n <= 0: lgamma(n)=inf with divbyzero */ +		/* n == 1,2: lgamma(n)=0 */ +		if (x <= 0) +			return 1/0.0; +		return 0; +	} + +	absx = fabs(x); + +	/* lgamma(x) ~ -log(|x|) for tiny |x| */ +	if (absx < 0x1p-54) { +		*sign = 1 - 2*!!signbit(x); +		return -log(absx); +	} + +	/* use tgamma for smaller |x| */ +	if (absx < 128) { +		x = tgamma(x); +		*sign = 1 - 2*!!signbit(x); +		return log(fabs(x)); +	} + +	/* second term (log(S)-g) could be more precise here.. */ +	/* or with stirling: (|x|-0.5)*(log(|x|)-1) + poly(1/|x|) */ +	r = (absx-0.5)*(log(absx+gmhalf)-1) + (log(S(absx)) - (gmhalf+0.5)); +	if (x < 0) { +		/* reflection formula for negative x */ +		x = sinpi(absx); +		*sign = 2*!!signbit(x) - 1; +		r = log(pi/(fabs(x)*absx)) - r; +	} +	return r; +} + +weak_alias(__lgamma_r, lgamma_r); +#endif diff --git a/src/math/tgammaf.c b/src/math/tgammaf.c index 16df8076..b4ca51c9 100644 --- a/src/math/tgammaf.c +++ b/src/math/tgammaf.c @@ -1,16 +1,6 @@  #include <math.h> -// FIXME: use lanczos approximation - -float __lgammaf_r(float, int *); -  float tgammaf(float x)  { -	int sign; -	float y; - -	y = exp(__lgammaf_r(x, &sign)); -	if (sign < 0) -		y = -y; -	return y; +	return tgamma(x);  } | 
