diff options
Diffstat (limited to 'src/math')
| -rw-r--r-- | src/math/jn.c | 171 | ||||
| -rw-r--r-- | src/math/jnf.c | 154 | 
2 files changed, 161 insertions, 164 deletions
| diff --git a/src/math/jn.c b/src/math/jn.c index d95af15d..4878a54f 100644 --- a/src/math/jn.c +++ b/src/math/jn.c @@ -20,7 +20,7 @@   * Note 2. About jn(n,x), yn(n,x)   *      For n=0, j0(x) is called,   *      for n=1, j1(x) is called, - *      for n<x, forward recursion us used starting + *      for n<=x, forward recursion is used starting   *      from values of j0(x) and j1(x).   *      for n>x, a continued fraction approximation to   *      j(n,x)/j(n-1,x) is evaluated and then backward @@ -32,7 +32,6 @@   *      yn(n,x) is similar in all respects, except   *      that forward recursion is used for all   *      values of n>1. - *   */  #include "libm.h" @@ -41,33 +40,39 @@ static const double invsqrtpi = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x504  double jn(int n, double x)  { -	int32_t i,hx,ix,lx,sgn; -	double a, b, temp, di; -	double z, w; +	uint32_t ix, lx; +	int nm1, i, sign; +	double a, b, temp; + +	EXTRACT_WORDS(ix, lx, x); +	sign = ix>>31; +	ix &= 0x7fffffff; + +	if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */ +		return x;  	/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)  	 * Thus, J(-n,x) = J(n,-x)  	 */ -	EXTRACT_WORDS(hx, lx, x); -	ix = 0x7fffffff & hx; -	/* if J(n,NaN) is NaN */ -	if ((ix|((uint32_t)(lx|-lx))>>31) > 0x7ff00000) -		return x+x; +	/* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */ +	if (n == 0) +		return j0(x);  	if (n < 0) { -		n = -n; +		nm1 = -(n+1);  		x = -x; -		hx ^= 0x80000000; -	} -	if (n == 0) return j0(x); -	if (n == 1) return j1(x); +		sign ^= 1; +	} else +		nm1 = n-1; +	if (nm1 == 0) +		return j1(x); -	sgn = (n&1)&(hx>>31);  /* even n -- 0, odd n -- sign(x) */ +	sign &= n;  /* even n: 0, odd n: signbit(x) */  	x = fabs(x); -	if ((ix|lx) == 0 || ix >= 0x7ff00000)  /* if x is 0 or inf */ +	if ((ix|lx) == 0 || ix == 0x7ff00000)  /* if x is 0 or inf */  		b = 0.0; -	else if ((double)n <= x) { +	else if (nm1 < x) {  		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ -		if (ix >= 0x52D00000) { /* x > 2**302 */ +		if (ix >= 0x52d00000) { /* x > 2**302 */  			/* (x >> n**2)  			 *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)  			 *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) @@ -81,19 +86,21 @@ double jn(int n, double x)  			 *             2    -s+c            -c-s  			 *             3     s+c             c-s  			 */ -			switch(n&3) { -			case 0: temp =  cos(x)+sin(x); break; -			case 1: temp = -cos(x)+sin(x); break; -			case 2: temp = -cos(x)-sin(x); break; -			case 3: temp =  cos(x)-sin(x); break; +			switch(nm1&3) { +			case 0: temp = -cos(x)+sin(x); break; +			case 1: temp = -cos(x)-sin(x); break; +			case 2: temp =  cos(x)-sin(x); break; +			default: +			case 3: temp =  cos(x)+sin(x); break;  			}  			b = invsqrtpi*temp/sqrt(x);  		} else {  			a = j0(x);  			b = j1(x); -			for (i=1; i<n; i++){ +			for (i=0; i<nm1; ) { +				i++;  				temp = b; -				b = b*((double)(i+i)/x) - a; /* avoid underflow */ +				b = b*(2.0*i/x) - a; /* avoid underflow */  				a = temp;  			}  		} @@ -102,12 +109,13 @@ double jn(int n, double x)  			/* x is tiny, return the first Taylor expansion of J(n,x)  			 * J(n,x) = 1/n!*(x/2)^n  - ...  			 */ -			if (n > 33)  /* underflow */ +			if (nm1 > 32)  /* underflow */  				b = 0.0;  			else {  				temp = x*0.5;  				b = temp; -				for (a=1.0,i=2; i<=n; i++) { +				a = 1.0; +				for (i=2; i<=nm1+1; i++) {  					a *= (double)i; /* a = n! */  					b *= temp;      /* b = (x/2)^n */  				} @@ -143,13 +151,14 @@ double jn(int n, double x)  			 * When Q(k) > 1e17     good for quadruple  			 */  			/* determine k */ -			double t,v; -			double q0,q1,h,tmp; -			int32_t k,m; +			double t,q0,q1,w,h,z,tmp,nf; +			int k; -			w  = (n+n)/(double)x; h = 2.0/(double)x; -			q0 = w; +			nf = nm1 + 1.0; +			w = 2*nf/x; +			h = 2/x;  			z = w+h; +			q0 = w;  			q1 = w*z - 1.0;  			k = 1;  			while (q1 < 1.0e9) { @@ -159,9 +168,8 @@ double jn(int n, double x)  				q0 = q1;  				q1 = tmp;  			} -			m = n+n; -			for (t=0.0, i = 2*(n+k); i>=m; i -= 2) -				t = 1.0/(i/x-t); +			for (t=0.0, i=k; i>=0; i--) +				t = 1/(2*(i+nf)/x - t);  			a = t;  			b = 1.0;  			/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) @@ -172,26 +180,20 @@ double jn(int n, double x)  			 *  then recurrent value may overflow and the result is  			 *  likely underflow to zero  			 */ -			tmp = n; -			v = 2.0/x; -			tmp = tmp*log(fabs(v*tmp)); +			tmp = nf*log(fabs(w));  			if (tmp < 7.09782712893383973096e+02) { -				for (i=n-1,di=(double)(i+i); i>0; i--) { +				for (i=nm1; i>0; i--) {  					temp = b; -					b *= di; -					b = b/x - a; +					b = b*(2.0*i)/x - a;  					a = temp; -					di -= 2.0;  				}  			} else { -				for (i=n-1,di=(double)(i+i); i>0; i--) { +				for (i=nm1; i>0; i--) {  					temp = b; -					b *= di; -					b = b/x - a; +					b = b*(2.0*i)/x - a;  					a = temp; -					di -= 2.0;  					/* scale b to avoid spurious overflow */ -					if (b > 1e100) { +					if (b > 0x1p500) {  						a /= b;  						t /= b;  						b  = 1.0; @@ -206,39 +208,40 @@ double jn(int n, double x)  				b = t*w/a;  		}  	} -	if (sgn==1) return -b; -	return b; +	return sign ? -b : b;  } -  double yn(int n, double x)  { -	int32_t i,hx,ix,lx; -	int32_t sign; +	uint32_t ix, lx, ib; +	int nm1, sign, i;  	double a, b, temp; -	EXTRACT_WORDS(hx, lx, x); -	ix = 0x7fffffff & hx; -	/* if Y(n,NaN) is NaN */ -	if ((ix|((uint32_t)(lx|-lx))>>31) > 0x7ff00000) -		return x+x; -	if ((ix|lx) == 0) -		return -1.0/0.0; -	if (hx < 0) -		return 0.0/0.0; -	sign = 1; -	if (n < 0) { -		n = -n; -		sign = 1 - ((n&1)<<1); -	} -	if (n == 0) -		return y0(x); -	if (n == 1) -		return sign*y1(x); +	EXTRACT_WORDS(ix, lx, x); +	sign = ix>>31; +	ix &= 0x7fffffff; + +	if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */ +		return x; +	if (sign && (ix|lx)!=0) /* x < 0 */ +		return 0/0.0;  	if (ix == 0x7ff00000)  		return 0.0; -	if (ix >= 0x52D00000) { /* x > 2**302 */ + +	if (n == 0) +		return y0(x); +	if (n < 0) { +		nm1 = -(n+1); +		sign = n&1; +	} else { +		nm1 = n-1; +		sign = 0; +	} +	if (nm1 == 0) +		return sign ? -y1(x) : y1(x); + +	if (ix >= 0x52d00000) { /* x > 2**302 */  		/* (x >> n**2)  		 *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)  		 *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) @@ -252,26 +255,26 @@ double yn(int n, double x)  		 *             2    -s+c            -c-s  		 *             3     s+c             c-s  		 */ -		switch(n&3) { -		case 0: temp =  sin(x)-cos(x); break; -		case 1: temp = -sin(x)-cos(x); break; -		case 2: temp = -sin(x)+cos(x); break; -		case 3: temp =  sin(x)+cos(x); break; +		switch(nm1&3) { +		case 0: temp = -sin(x)-cos(x); break; +		case 1: temp = -sin(x)+cos(x); break; +		case 2: temp =  sin(x)+cos(x); break; +		default: +		case 3: temp =  sin(x)-cos(x); break;  		}  		b = invsqrtpi*temp/sqrt(x);  	} else { -		uint32_t high;  		a = y0(x);  		b = y1(x);  		/* quit if b is -inf */ -		GET_HIGH_WORD(high, b); -		for (i=1; i<n && high!=0xfff00000; i++){ +		GET_HIGH_WORD(ib, b); +		for (i=0; i<nm1 && ib!=0xfff00000; ){ +			i++;  			temp = b; -			b = ((double)(i+i)/x)*b - a; -			GET_HIGH_WORD(high, b); +			b = (2.0*i/x)*b - a; +			GET_HIGH_WORD(ib, b);  			a = temp;  		}  	} -	if (sign > 0) return b; -	return -b; +	return sign ? -b : b;  } diff --git a/src/math/jnf.c b/src/math/jnf.c index fd291103..f63c062f 100644 --- a/src/math/jnf.c +++ b/src/math/jnf.c @@ -18,55 +18,57 @@  float jnf(int n, float x)  { -	int32_t i,hx,ix, sgn; -	float a, b, temp, di; -	float z, w; +	uint32_t ix; +	int nm1, sign, i; +	float a, b, temp; + +	GET_FLOAT_WORD(ix, x); +	sign = ix>>31; +	ix &= 0x7fffffff; +	if (ix > 0x7f800000) /* nan */ +		return x; -	/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) -	 * Thus, J(-n,x) = J(n,-x) -	 */ -	GET_FLOAT_WORD(hx, x); -	ix = 0x7fffffff & hx; -	/* if J(n,NaN) is NaN */ -	if (ix > 0x7f800000) -		return x+x; +	/* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */ +	if (n == 0) +		return j0f(x);  	if (n < 0) { -		n = -n; +		nm1 = -(n+1);  		x = -x; -		hx ^= 0x80000000; -	} -	if (n == 0) return j0f(x); -	if (n == 1) return j1f(x); +		sign ^= 1; +	} else +		nm1 = n-1; +	if (nm1 == 0) +		return j1f(x); -	sgn = (n&1)&(hx>>31);  /* even n -- 0, odd n -- sign(x) */ +	sign &= n;  /* even n: 0, odd n: signbit(x) */  	x = fabsf(x); -	if (ix == 0 || ix >= 0x7f800000)  /* if x is 0 or inf */ +	if (ix == 0 || ix == 0x7f800000)  /* if x is 0 or inf */  		b = 0.0f; -	else if((float)n <= x) { +	else if (nm1 < x) {  		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */  		a = j0f(x);  		b = j1f(x); -		for (i=1; i<n; i++){ +		for (i=0; i<nm1; ){ +			i++;  			temp = b; -			b = b*((float)(i+i)/x) - a; /* avoid underflow */ +			b = b*(2.0f*i/x) - a;  			a = temp;  		}  	} else { -		if (ix < 0x30800000) { /* x < 2**-29 */ +		if (ix < 0x35800000) { /* x < 2**-20 */  			/* x is tiny, return the first Taylor expansion of J(n,x)  			 * J(n,x) = 1/n!*(x/2)^n  - ...  			 */ -			if (n > 33)  /* underflow */ -				b = 0.0f; -			else { -				temp = 0.5f * x; -				b = temp; -				for (a=1.0f,i=2; i<=n; i++) { -					a *= (float)i;    /* a = n! */ -					b *= temp;        /* b = (x/2)^n */ -				} -				b = b/a; +			if (nm1 > 8)  /* underflow */ +				nm1 = 8; +			temp = 0.5f * x; +			b = temp; +			a = 1.0f; +			for (i=2; i<=nm1+1; i++) { +				a *= (float)i;    /* a = n! */ +				b *= temp;        /* b = (x/2)^n */  			} +			b = b/a;  		} else {  			/* use backward recurrence */  			/*                      x      x^2      x^2 @@ -97,26 +99,25 @@ float jnf(int n, float x)  			 * When Q(k) > 1e17     good for quadruple  			 */  			/* determine k */ -			float t,v; -			float q0,q1,h,tmp; -			int32_t k,m; +			float t,q0,q1,w,h,z,tmp,nf; +			int k; -			w = (n+n)/x; -			h = 2.0f/x; +			nf = nm1+1.0f; +			w = 2*nf/x; +			h = 2/x;  			z = w+h;  			q0 = w;  			q1 = w*z - 1.0f;  			k = 1; -			while (q1 < 1.0e9f) { +			while (q1 < 1.0e4f) {  				k += 1;  				z += h;  				tmp = z*q1 - q0;  				q0 = q1;  				q1 = tmp;  			} -			m = n+n; -			for (t=0.0f, i = 2*(n+k); i>=m; i -= 2) -				t = 1.0f/(i/x-t); +			for (t=0.0f, i=k; i>=0; i--) +				t = 1.0f/(2*(i+nf)/x-t);  			a = t;  			b = 1.0f;  			/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) @@ -127,26 +128,20 @@ float jnf(int n, float x)  			 *  then recurrent value may overflow and the result is  			 *  likely underflow to zero  			 */ -			tmp = n; -			v = 2.0f/x; -			tmp = tmp*logf(fabsf(v*tmp)); +			tmp = nf*logf(fabsf(w));  			if (tmp < 88.721679688f) { -				for (i=n-1,di=(float)(i+i); i>0; i--) { +				for (i=nm1; i>0; i--) {  					temp = b; -					b *= di; -					b = b/x - a; +					b = 2.0f*i*b/x - a;  					a = temp; -					di -= 2.0f;  				}  			} else { -				for (i=n-1,di=(float)(i+i); i>0; i--){ +				for (i=nm1; i>0; i--){  					temp = b; -					b *= di; -					b = b/x - a; +					b = 2.0f*i*b/x - a;  					a = temp; -					di -= 2.0f;  					/* scale b to avoid spurious overflow */ -					if (b > 1e10f) { +					if (b > 0x1p60f) {  						a /= b;  						t /= b;  						b = 1.0f; @@ -161,48 +156,47 @@ float jnf(int n, float x)  				b = t*w/a;  		}  	} -	if (sgn == 1) return -b; -	return b; +	return sign ? -b : b;  }  float ynf(int n, float x)  { -	int32_t i,hx,ix,ib; -	int32_t sign; +	uint32_t ix, ib; +	int nm1, sign, i;  	float a, b, temp; -	GET_FLOAT_WORD(hx, x); -	ix = 0x7fffffff & hx; -	/* if Y(n,NaN) is NaN */ -	if (ix > 0x7f800000) -		return x+x; -	if (ix == 0) -		return -1.0f/0.0f; -	if (hx < 0) -		return 0.0f/0.0f; -	sign = 1; -	if (n < 0) { -		n = -n; -		sign = 1 - ((n&1)<<1); -	} -	if (n == 0) -		return y0f(x); -	if (n == 1) -		return sign*y1f(x); +	GET_FLOAT_WORD(ix, x); +	sign = ix>>31; +	ix &= 0x7fffffff; +	if (ix > 0x7f800000) /* nan */ +		return x; +	if (sign && ix != 0) /* x < 0 */ +		return 0/0.0f;  	if (ix == 0x7f800000)  		return 0.0f; +	if (n == 0) +		return y0f(x); +	if (n < 0) { +		nm1 = -(n+1); +		sign = n&1; +	} else { +		nm1 = n-1; +		sign = 0; +	} +	if (nm1 == 0) +		return sign ? -y1f(x) : y1f(x); +  	a = y0f(x);  	b = y1f(x);  	/* quit if b is -inf */  	GET_FLOAT_WORD(ib,b); -	for (i = 1; i < n && ib != 0xff800000; i++){ +	for (i = 0; i < nm1 && ib != 0xff800000; ) { +		i++;  		temp = b; -		b = ((float)(i+i)/x)*b - a; +		b = (2.0f*i/x)*b - a;  		GET_FLOAT_WORD(ib, b);  		a = temp;  	} -	if (sign > 0) -		return b; -	return -b; +	return sign ? -b : b;  } | 
