diff options
Diffstat (limited to 'src/math/exp.c')
| -rw-r--r-- | src/math/exp.c | 123 | 
1 files changed, 51 insertions, 72 deletions
| diff --git a/src/math/exp.c b/src/math/exp.c index 29bf9609..5ec8f8a7 100644 --- a/src/math/exp.c +++ b/src/math/exp.c @@ -25,7 +25,7 @@   *      the interval [0,0.34658]:   *      Write   *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... - *      We use a special Remes algorithm on [0,0.34658] to generate + *      We use a special Remez algorithm on [0,0.34658] to generate   *      a polynomial of degree 5 to approximate R. The maximum error   *      of this polynomial approximation is bounded by 2**-59. In   *      other words, @@ -36,15 +36,15 @@   *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2   *          |                             |   *      The computation of exp(r) thus becomes - *                             2*r - *              exp(r) = 1 + ------- - *                            R - r - *                                 r*R1(r) + *                              2*r + *              exp(r) = 1 + ---------- + *                            R(r) - r + *                                 r*c(r)   *                     = 1 + r + ----------- (for better accuracy) - *                                2 - R1(r) + *                                2 - c(r)   *      where - *                               2       4             10 - *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ). + *                              2       4             10 + *              c(r) = r - (P1*r  + P2*r  + ... + P5*r   ).   *   *   3. Scale back to obtain exp(x):   *      From step 1, we have @@ -61,27 +61,16 @@   *   * Misc. info.   *      For IEEE double - *          if x >  7.09782712893383973096e+02 then exp(x) overflow - *          if x < -7.45133219101941108420e+02 then exp(x) underflow - * - * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. + *          if x >  709.782712893383973096 then exp(x) overflows + *          if x < -745.133219101941108420 then exp(x) underflows   */  #include "libm.h"  static const double -halF[2] = {0.5,-0.5,}, -huge    = 1.0e+300, -o_threshold =  7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ -u_threshold = -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */ -ln2HI[2]   = { 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ -              -6.93147180369123816490e-01},/* 0xbfe62e42, 0xfee00000 */ -ln2LO[2]   = { 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ -              -1.90821492927058770002e-10},/* 0xbdea39ef, 0x35793c76 */ +half[2] = {0.5,-0.5}, +ln2hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ +ln2lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */  invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */  P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */  P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ @@ -89,68 +78,58 @@ P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */  P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */  P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ -static const volatile double -twom1000 = 9.33263618503218878990e-302; /* 2**-1000=0x01700000,0 */ -  double exp(double x)  { -	double y,hi=0.0,lo=0.0,c,t,twopk; -	int32_t k=0,xsb; +	double hi, lo, c, xx; +	int k, sign;  	uint32_t hx;  	GET_HIGH_WORD(hx, x); -	xsb = (hx>>31)&1;  /* sign bit of x */ +	sign = hx>>31;  	hx &= 0x7fffffff;  /* high word of |x| */ -	/* filter out non-finite argument */ -	if (hx >= 0x40862E42) {  /* if |x| >= 709.78... */ -		if (hx >= 0x7ff00000) { -			uint32_t lx; -	 -			GET_LOW_WORD(lx,x); -			if (((hx&0xfffff)|lx) != 0)  /* NaN */ -				 return x+x; -			return xsb==0 ? x : 0.0;  /* exp(+-inf)={inf,0} */ +	/* special cases */ +	if (hx >= 0x40862e42) {  /* if |x| >= 709.78... */ +		if (isnan(x)) +			return x; +		if (hx == 0x7ff00000 && sign) /* -inf */ +			return 0; +		if (x > 709.782712893383973096) { +			/* overflow if x!=inf */ +			STRICT_ASSIGN(double, x, 0x1p1023 * x); +			return x; +		} +		if (x < -745.13321910194110842) { +			/* underflow */ +			STRICT_ASSIGN(double, x, 0x1p-1000 * 0x1p-1000); +			return x;  		} -		if (x > o_threshold) -			return huge*huge; /* overflow */ -		if (x < u_threshold) -			return twom1000*twom1000; /* underflow */  	}  	/* argument reduction */ -	if (hx > 0x3fd62e42) {  /* if  |x| > 0.5 ln2 */ -		if (hx < 0x3FF0A2B2) {  /* and |x| < 1.5 ln2 */ -			hi = x-ln2HI[xsb]; -			lo = ln2LO[xsb]; -			k = 1 - xsb - xsb; -		} else { -			k  = (int)(invln2*x+halF[xsb]); -			t  = k; -			hi = x - t*ln2HI[0];  /* t*ln2HI is exact here */ -			lo = t*ln2LO[0]; -		} +	if (hx > 0x3fd62e42) {  /* if |x| > 0.5 ln2 */ +		if (hx >= 0x3ff0a2b2)  /* if |x| >= 1.5 ln2 */ +			k = (int)(invln2*x + half[sign]); +		else +			k = 1 - sign - sign; +		hi = x - k*ln2hi;  /* k*ln2hi is exact here */ +		lo = k*ln2lo;  		STRICT_ASSIGN(double, x, hi - lo); -	} else if(hx < 0x3e300000)  {  /* |x| < 2**-28 */ -		/* raise inexact */ -		if (huge+x > 1.0) -			return 1.0+x; -	} else +	} else if (hx > 0x3e300000)  {  /* if |x| > 2**-28 */  		k = 0; +		hi = x; +		lo = 0; +	} else { +		/* inexact if x!=0 */ +		FORCE_EVAL(0x1p1023 + x); +		return 1 + x; +	}  	/* x is now in primary range */ -	t  = x*x; -	if (k >= -1021) -		INSERT_WORDS(twopk, 0x3ff00000+(k<<20), 0); -	else -		INSERT_WORDS(twopk, 0x3ff00000+((k+1000)<<20), 0); -	c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); +	xx = x*x; +	c = x - xx*(P1+xx*(P2+xx*(P3+xx*(P4+xx*P5)))); +	x = 1 + (x*c/(2-c) - lo + hi);  	if (k == 0) -		return 1.0 - ((x*c)/(c-2.0) - x); -	y = 1.0-((lo-(x*c)/(2.0-c))-hi); -	if (k < -1021) -		return y*twopk*twom1000; -	if (k == 1024) -		return y*2.0*0x1p1023; -	return y*twopk; +		return x; +	return scalbn(x, k);  } | 
