summaryrefslogtreecommitdiff
path: root/src/math/cbrt.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/math/cbrt.c')
-rw-r--r--src/math/cbrt.c36
1 files changed, 17 insertions, 19 deletions
diff --git a/src/math/cbrt.c b/src/math/cbrt.c
index f4253428..7599d3e3 100644
--- a/src/math/cbrt.c
+++ b/src/math/cbrt.c
@@ -15,7 +15,8 @@
* Return cube root of x
*/
-#include "libm.h"
+#include <math.h>
+#include <stdint.h>
static const uint32_t
B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */
@@ -31,15 +32,10 @@ P4 = 0.145996192886612446982; /* 0x3fc2b000, 0xd4e4edd7 */
double cbrt(double x)
{
- int32_t hx;
- union dshape u;
- double r,s,t=0.0,w;
- uint32_t sign;
- uint32_t high,low;
+ union {double f; uint64_t i;} u = {x};
+ double_t r,s,t,w;
+ uint32_t hx = u.i>>32 & 0x7fffffff;
- EXTRACT_WORDS(hx, low, x);
- sign = hx & 0x80000000;
- hx ^= sign;
if (hx >= 0x7ff00000) /* cbrt(NaN,INF) is itself */
return x+x;
@@ -59,14 +55,16 @@ double cbrt(double x)
* division rounds towards minus infinity; this is also efficient.
*/
if (hx < 0x00100000) { /* zero or subnormal? */
- if ((hx|low) == 0)
+ u.f = x*0x1p54;
+ hx = u.i>>32 & 0x7fffffff;
+ if (hx == 0)
return x; /* cbrt(0) is itself */
- SET_HIGH_WORD(t, 0x43500000); /* set t = 2**54 */
- t *= x;
- GET_HIGH_WORD(high, t);
- INSERT_WORDS(t, sign|((high&0x7fffffff)/3+B2), 0);
+ hx = hx/3 + B2;
} else
- INSERT_WORDS(t, sign|(hx/3+B1), 0);
+ hx = hx/3 + B1;
+ u.i &= 1ULL<<63;
+ u.i |= (uint64_t)hx << 32;
+ t = u.f;
/*
* New cbrt to 23 bits:
@@ -76,7 +74,7 @@ double cbrt(double x)
* has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this
* gives us bounds for r = t**3/x.
*
- * Try to optimize for parallel evaluation as in k_tanf.c.
+ * Try to optimize for parallel evaluation as in __tanf.c.
*/
r = (t*t)*(t/x);
t = t*((P0+r*(P1+r*P2))+((r*r)*r)*(P3+r*P4));
@@ -91,9 +89,9 @@ double cbrt(double x)
* 0.667; the error in the rounded t can be up to about 3 23-bit ulps
* before the final error is larger than 0.667 ulps.
*/
- u.value = t;
- u.bits = (u.bits + 0x80000000) & 0xffffffffc0000000ULL;
- t = u.value;
+ u.f = t;
+ u.i = (u.i + 0x80000000) & 0xffffffffc0000000ULL;
+ t = u.f;
/* one step Newton iteration to 53 bits with error < 0.667 ulps */
s = t*t; /* t*t is exact */